![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | jcad 555 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: equvinv 1959 equvinivOLD 1961 mo2v 2477 mopick2 2540 2eu6 2558 cgsexg 3238 cgsex2g 3239 cgsex4g 3240 reximdva0 3933 difsn 4328 preq12b 4382 elres 5435 relssres 5437 ordtr2 5768 elunirn 6509 fnoprabg 6761 tz7.49 7540 omord 7648 ficard 9387 fpwwe2lem12 9463 1idpr 9851 xrsupsslem 12137 xrinfmsslem 12138 fzospliti 12500 sqrt2irr 14979 algcvga 15292 prmind2 15398 infpn2 15617 grpinveu 17456 1stcrest 21256 fgss2 21678 fgcl 21682 filufint 21724 metrest 22329 reconnlem2 22630 plydivex 24052 ftalem3 24801 chtub 24937 lgsqrmodndvds 25078 2sqlem10 25153 dchrisum0flb 25199 pntpbnd1 25275 2pthfrgrrn2 27147 grpoidinvlem3 27360 grpoinveu 27373 elim2ifim 29364 iocinif 29543 tpr2rico 29958 bnj168 30798 dfon2lem8 31695 dftrpred3g 31733 nolesgn2o 31824 nosupbnd1lem4 31857 nn0prpwlem 32317 voliunnfl 33453 dalem20 34979 elpaddn0 35086 cdleme25a 35641 cdleme29ex 35662 cdlemefr29exN 35690 dibglbN 36455 dihlsscpre 36523 lcfl7N 36790 mapdh9a 37079 mapdh9aOLDN 37080 hdmap11lem2 37134 ax6e2eq 38773 eliin2f 39287 |
Copyright terms: Public domain | W3C validator |