MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb2 Structured version   Visualization version   GIF version

Theorem sb2 2352
Description: One direction of a simplified definition of substitution. The converse requires either a dv condition (sb6 2429) or a non-freeness hypothesis (sb6f 2385). (Contributed by NM, 13-May-1993.)
Assertion
Ref Expression
sb2 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)

Proof of Theorem sb2
StepHypRef Expression
1 sp 2053 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
2 equs4 2290 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
3 df-sb 1881 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
41, 2, 3sylanbrc 698 1 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481  wex 1704  [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-sb 1881
This theorem is referenced by:  stdpc4  2353  sb3  2355  sb4b  2358  hbsb2  2359  hbsb2a  2361  hbsb2e  2363  equsb1  2368  equsb2  2369  dfsb2  2373  sbequi  2375  sb6f  2385  sbi1  2392  sb6  2429  iota4  5869  wl-lem-moexsb  33350  sbeqal1  38598
  Copyright terms: Public domain W3C validator