![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapval | Structured version Visualization version GIF version |
Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 37174. (Contributed by NM, 25-Mar-2015.) |
Ref | Expression |
---|---|
hgmapval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hgmapfval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hgmapfval.v | ⊢ 𝑉 = (Base‘𝑈) |
hgmapfval.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hgmapfval.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hgmapfval.b | ⊢ 𝐵 = (Base‘𝑅) |
hgmapfval.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hgmapfval.s | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hgmapfval.m | ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) |
hgmapfval.i | ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) |
hgmapfval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) |
hgmapval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
hgmapval | ⊢ (𝜑 → (𝐼‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmapval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hgmapfval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hgmapfval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hgmapfval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
5 | hgmapfval.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hgmapfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
7 | hgmapfval.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hgmapfval.s | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
9 | hgmapfval.m | . . . 4 ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) | |
10 | hgmapfval.i | . . . 4 ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) | |
11 | hgmapfval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | hgmapfval 37178 | . . 3 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))) |
13 | 12 | fveq1d 6193 | . 2 ⊢ (𝜑 → (𝐼‘𝑋) = ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋)) |
14 | hgmapval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | riotaex 6615 | . . 3 ⊢ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) ∈ V | |
16 | oveq1 6657 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑣) = (𝑋 · 𝑣)) | |
17 | 16 | fveq2d 6195 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑀‘(𝑥 · 𝑣)) = (𝑀‘(𝑋 · 𝑣))) |
18 | 17 | eqeq1d 2624 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)) ↔ (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
19 | 18 | ralbidv 2986 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)) ↔ ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
20 | 19 | riotabidv 6613 | . . . 4 ⊢ (𝑥 = 𝑋 → (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
21 | eqid 2622 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) | |
22 | 20, 21 | fvmptg 6280 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) ∈ V) → ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
23 | 14, 15, 22 | sylancl 694 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
24 | 13, 23 | eqtrd 2656 | 1 ⊢ (𝜑 → (𝐼‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ↦ cmpt 4729 ‘cfv 5888 ℩crio 6610 (class class class)co 6650 Basecbs 15857 Scalarcsca 15944 ·𝑠 cvsca 15945 LHypclh 35270 DVecHcdvh 36367 LCDualclcd 36875 HDMapchdma 37082 HGMapchg 37175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-hgmap 37176 |
This theorem is referenced by: hgmapcl 37181 hgmapvs 37183 |
Copyright terms: Public domain | W3C validator |