MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imai Structured version   Visualization version   GIF version

Theorem imai 5478
Description: Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
imai ( I “ 𝐴) = 𝐴

Proof of Theorem imai
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfima3 5469 . 2 ( I “ 𝐴) = {𝑦 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I )}
2 df-br 4654 . . . . . . . 8 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
3 vex 3203 . . . . . . . . 9 𝑦 ∈ V
43ideq 5274 . . . . . . . 8 (𝑥 I 𝑦𝑥 = 𝑦)
52, 4bitr3i 266 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
65anbi2i 730 . . . . . 6 ((𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝑥𝐴𝑥 = 𝑦))
7 ancom 466 . . . . . 6 ((𝑥𝐴𝑥 = 𝑦) ↔ (𝑥 = 𝑦𝑥𝐴))
86, 7bitri 264 . . . . 5 ((𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝑥 = 𝑦𝑥𝐴))
98exbii 1774 . . . 4 (∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ∃𝑥(𝑥 = 𝑦𝑥𝐴))
10 eleq1 2689 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1110equsexvw 1932 . . . 4 (∃𝑥(𝑥 = 𝑦𝑥𝐴) ↔ 𝑦𝐴)
129, 11bitri 264 . . 3 (∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ 𝑦𝐴)
1312abbii 2739 . 2 {𝑦 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ I )} = {𝑦𝑦𝐴}
14 abid2 2745 . 2 {𝑦𝑦𝐴} = 𝐴
151, 13, 143eqtri 2648 1 ( I “ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  cop 4183   class class class wbr 4653   I cid 5023  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  rnresi  5479  cnvresid  5968  ecidsn  7795  mbfid  23403  frege131d  38056  frege110  38267  frege133  38290
  Copyright terms: Public domain W3C validator