Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege131d Structured version   Visualization version   GIF version

Theorem frege131d 38056
Description: If 𝐹 is a function and 𝐴 contains all elements of 𝑈 and all elements before or after those elements of 𝑈 in the transitive closure of 𝐹, then the image under 𝐹 of 𝐴 is a subclass of 𝐴. Similar to Proposition 131 of [Frege1879] p. 85. Compare with frege131 38288. (Contributed by RP, 17-Jul-2020.)
Hypotheses
Ref Expression
frege131d.f (𝜑𝐹 ∈ V)
frege131d.a (𝜑𝐴 = (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
frege131d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege131d (𝜑 → (𝐹𝐴) ⊆ 𝐴)

Proof of Theorem frege131d
StepHypRef Expression
1 frege131d.f . . . . 5 (𝜑𝐹 ∈ V)
2 trclfvlb 13749 . . . . 5 (𝐹 ∈ V → 𝐹 ⊆ (t+‘𝐹))
3 imass1 5500 . . . . 5 (𝐹 ⊆ (t+‘𝐹) → (𝐹𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
41, 2, 33syl 18 . . . 4 (𝜑 → (𝐹𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
5 ssun2 3777 . . . . 5 ((t+‘𝐹) “ 𝑈) ⊆ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))
6 ssun2 3777 . . . . 5 (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
75, 6sstri 3612 . . . 4 ((t+‘𝐹) “ 𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
84, 7syl6ss 3615 . . 3 (𝜑 → (𝐹𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
9 trclfvdecomr 38020 . . . . . . . . . . . 12 (𝐹 ∈ V → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
101, 9syl 17 . . . . . . . . . . 11 (𝜑 → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
1110cnveqd 5298 . . . . . . . . . 10 (𝜑(t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
12 cnvun 5538 . . . . . . . . . . 11 (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (𝐹((t+‘𝐹) ∘ 𝐹))
13 cnvco 5308 . . . . . . . . . . . 12 ((t+‘𝐹) ∘ 𝐹) = (𝐹(t+‘𝐹))
1413uneq2i 3764 . . . . . . . . . . 11 (𝐹((t+‘𝐹) ∘ 𝐹)) = (𝐹 ∪ (𝐹(t+‘𝐹)))
1512, 14eqtri 2644 . . . . . . . . . 10 (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (𝐹 ∪ (𝐹(t+‘𝐹)))
1611, 15syl6eq 2672 . . . . . . . . 9 (𝜑(t+‘𝐹) = (𝐹 ∪ (𝐹(t+‘𝐹))))
1716coeq2d 5284 . . . . . . . 8 (𝜑 → (𝐹(t+‘𝐹)) = (𝐹 ∘ (𝐹 ∪ (𝐹(t+‘𝐹)))))
18 coundi 5636 . . . . . . . . 9 (𝐹 ∘ (𝐹 ∪ (𝐹(t+‘𝐹)))) = ((𝐹𝐹) ∪ (𝐹 ∘ (𝐹(t+‘𝐹))))
19 frege131d.fun . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
20 funcocnv2 6161 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
2119, 20syl 17 . . . . . . . . . 10 (𝜑 → (𝐹𝐹) = ( I ↾ ran 𝐹))
22 coass 5654 . . . . . . . . . . . 12 ((𝐹𝐹) ∘ (t+‘𝐹)) = (𝐹 ∘ (𝐹(t+‘𝐹)))
2322eqcomi 2631 . . . . . . . . . . 11 (𝐹 ∘ (𝐹(t+‘𝐹))) = ((𝐹𝐹) ∘ (t+‘𝐹))
2421coeq1d 5283 . . . . . . . . . . 11 (𝜑 → ((𝐹𝐹) ∘ (t+‘𝐹)) = (( I ↾ ran 𝐹) ∘ (t+‘𝐹)))
2523, 24syl5eq 2668 . . . . . . . . . 10 (𝜑 → (𝐹 ∘ (𝐹(t+‘𝐹))) = (( I ↾ ran 𝐹) ∘ (t+‘𝐹)))
2621, 25uneq12d 3768 . . . . . . . . 9 (𝜑 → ((𝐹𝐹) ∪ (𝐹 ∘ (𝐹(t+‘𝐹)))) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))))
2718, 26syl5eq 2668 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝐹 ∪ (𝐹(t+‘𝐹)))) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))))
2817, 27eqtrd 2656 . . . . . . 7 (𝜑 → (𝐹(t+‘𝐹)) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))))
2928imaeq1d 5465 . . . . . 6 (𝜑 → ((𝐹(t+‘𝐹)) “ 𝑈) = ((( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))) “ 𝑈))
30 imaundir 5546 . . . . . 6 ((( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))) “ 𝑈) = ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈))
3129, 30syl6eq 2672 . . . . 5 (𝜑 → ((𝐹(t+‘𝐹)) “ 𝑈) = ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)))
32 resss 5422 . . . . . . . . 9 ( I ↾ ran 𝐹) ⊆ I
33 imass1 5500 . . . . . . . . 9 (( I ↾ ran 𝐹) ⊆ I → (( I ↾ ran 𝐹) “ 𝑈) ⊆ ( I “ 𝑈))
3432, 33ax-mp 5 . . . . . . . 8 (( I ↾ ran 𝐹) “ 𝑈) ⊆ ( I “ 𝑈)
35 imai 5478 . . . . . . . 8 ( I “ 𝑈) = 𝑈
3634, 35sseqtri 3637 . . . . . . 7 (( I ↾ ran 𝐹) “ 𝑈) ⊆ 𝑈
37 imaco 5640 . . . . . . . 8 ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈) = (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈))
38 imass1 5500 . . . . . . . . . 10 (( I ↾ ran 𝐹) ⊆ I → (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈)) ⊆ ( I “ ((t+‘𝐹) “ 𝑈)))
3932, 38ax-mp 5 . . . . . . . . 9 (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈)) ⊆ ( I “ ((t+‘𝐹) “ 𝑈))
40 imai 5478 . . . . . . . . 9 ( I “ ((t+‘𝐹) “ 𝑈)) = ((t+‘𝐹) “ 𝑈)
4139, 40sseqtri 3637 . . . . . . . 8 (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈)) ⊆ ((t+‘𝐹) “ 𝑈)
4237, 41eqsstri 3635 . . . . . . 7 ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈)
43 unss12 3785 . . . . . . 7 (((( I ↾ ran 𝐹) “ 𝑈) ⊆ 𝑈 ∧ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈)) → ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝐹) “ 𝑈)))
4436, 42, 43mp2an 708 . . . . . 6 ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝐹) “ 𝑈))
45 ssun1 3776 . . . . . . 7 (𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ⊆ ((𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ∪ ((t+‘𝐹) “ 𝑈))
46 unass 3770 . . . . . . 7 ((𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ∪ ((t+‘𝐹) “ 𝑈)) = (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
4745, 46sseqtri 3637 . . . . . 6 (𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
4844, 47sstri 3612 . . . . 5 ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
4931, 48syl6eqss 3655 . . . 4 (𝜑 → ((𝐹(t+‘𝐹)) “ 𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
50 coss1 5277 . . . . . . . 8 (𝐹 ⊆ (t+‘𝐹) → (𝐹 ∘ (t+‘𝐹)) ⊆ ((t+‘𝐹) ∘ (t+‘𝐹)))
511, 2, 503syl 18 . . . . . . 7 (𝜑 → (𝐹 ∘ (t+‘𝐹)) ⊆ ((t+‘𝐹) ∘ (t+‘𝐹)))
52 trclfvcotrg 13757 . . . . . . 7 ((t+‘𝐹) ∘ (t+‘𝐹)) ⊆ (t+‘𝐹)
5351, 52syl6ss 3615 . . . . . 6 (𝜑 → (𝐹 ∘ (t+‘𝐹)) ⊆ (t+‘𝐹))
54 imass1 5500 . . . . . 6 ((𝐹 ∘ (t+‘𝐹)) ⊆ (t+‘𝐹) → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
5553, 54syl 17 . . . . 5 (𝜑 → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
5655, 7syl6ss 3615 . . . 4 (𝜑 → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
5749, 56unssd 3789 . . 3 (𝜑 → (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
588, 57unssd 3789 . 2 (𝜑 → ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
59 frege131d.a . . . 4 (𝜑𝐴 = (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
6059imaeq2d 5466 . . 3 (𝜑 → (𝐹𝐴) = (𝐹 “ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))))
61 imaundi 5545 . . . 4 (𝐹 “ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹𝑈) ∪ (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
62 imaundi 5545 . . . . . 6 (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) = ((𝐹 “ ((t+‘𝐹) “ 𝑈)) ∪ (𝐹 “ ((t+‘𝐹) “ 𝑈)))
63 imaco 5640 . . . . . . . 8 ((𝐹(t+‘𝐹)) “ 𝑈) = (𝐹 “ ((t+‘𝐹) “ 𝑈))
6463eqcomi 2631 . . . . . . 7 (𝐹 “ ((t+‘𝐹) “ 𝑈)) = ((𝐹(t+‘𝐹)) “ 𝑈)
65 imaco 5640 . . . . . . . 8 ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) = (𝐹 “ ((t+‘𝐹) “ 𝑈))
6665eqcomi 2631 . . . . . . 7 (𝐹 “ ((t+‘𝐹) “ 𝑈)) = ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)
6764, 66uneq12i 3765 . . . . . 6 ((𝐹 “ ((t+‘𝐹) “ 𝑈)) ∪ (𝐹 “ ((t+‘𝐹) “ 𝑈))) = (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))
6862, 67eqtri 2644 . . . . 5 (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) = (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))
6968uneq2i 3764 . . . 4 ((𝐹𝑈) ∪ (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)))
7061, 69eqtri 2644 . . 3 (𝐹 “ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)))
7160, 70syl6eq 2672 . 2 (𝜑 → (𝐹𝐴) = ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))))
7258, 71, 593sstr4d 3648 1 (𝜑 → (𝐹𝐴) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  wss 3574   I cid 5023  ccnv 5113  ran crn 5115  cres 5116  cima 5117  ccom 5118  Fun wfun 5882  cfv 5888  t+ctcl 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-trcl 13726  df-relexp 13761
This theorem is referenced by:  frege133d  38057
  Copyright terms: Public domain W3C validator