MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvresid Structured version   Visualization version   GIF version

Theorem cnvresid 5968
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
Assertion
Ref Expression
cnvresid ( I ↾ 𝐴) = ( I ↾ 𝐴)

Proof of Theorem cnvresid
StepHypRef Expression
1 cnvi 5537 . . 3 I = I
21eqcomi 2631 . 2 I = I
3 funi 5920 . . 3 Fun I
4 funeq 5908 . . 3 ( I = I → (Fun I ↔ Fun I ))
53, 4mpbii 223 . 2 ( I = I → Fun I )
6 funcnvres 5967 . . 3 (Fun I → ( I ↾ 𝐴) = ( I ↾ ( I “ 𝐴)))
7 imai 5478 . . . 4 ( I “ 𝐴) = 𝐴
81, 7reseq12i 5394 . . 3 ( I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴)
96, 8syl6eq 2672 . 2 (Fun I → ( I ↾ 𝐴) = ( I ↾ 𝐴))
102, 5, 9mp2b 10 1 ( I ↾ 𝐴) = ( I ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483   I cid 5023  ccnv 5113  cres 5116  cima 5117  Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890
This theorem is referenced by:  fcoi1  6078  f1oi  6174  relexpcnv  13775  tsrdir  17238  gicref  17713  ssidcn  21059  idqtop  21509  idhmeo  21576  ltrncnvnid  35413  dihmeetlem1N  36579  dihglblem5apreN  36580  diophrw  37322  cnvrcl0  37932  relexpaddss  38010
  Copyright terms: Public domain W3C validator