Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaindm Structured version   Visualization version   GIF version

Theorem imaindm 31682
Description: The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021.)
Assertion
Ref Expression
imaindm (𝑅𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅))

Proof of Theorem imaindm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . . 7 𝑦 ∈ V
2 vex 3203 . . . . . . 7 𝑥 ∈ V
31, 2breldm 5329 . . . . . 6 (𝑦𝑅𝑥𝑦 ∈ dom 𝑅)
43pm4.71ri 665 . . . . 5 (𝑦𝑅𝑥 ↔ (𝑦 ∈ dom 𝑅𝑦𝑅𝑥))
54rexbii 3041 . . . 4 (∃𝑦𝐴 𝑦𝑅𝑥 ↔ ∃𝑦𝐴 (𝑦 ∈ dom 𝑅𝑦𝑅𝑥))
6 elin 3796 . . . . . . 7 (𝑦 ∈ (𝐴 ∩ dom 𝑅) ↔ (𝑦𝐴𝑦 ∈ dom 𝑅))
76anbi1i 731 . . . . . 6 ((𝑦 ∈ (𝐴 ∩ dom 𝑅) ∧ 𝑦𝑅𝑥) ↔ ((𝑦𝐴𝑦 ∈ dom 𝑅) ∧ 𝑦𝑅𝑥))
8 anass 681 . . . . . 6 (((𝑦𝐴𝑦 ∈ dom 𝑅) ∧ 𝑦𝑅𝑥) ↔ (𝑦𝐴 ∧ (𝑦 ∈ dom 𝑅𝑦𝑅𝑥)))
97, 8bitri 264 . . . . 5 ((𝑦 ∈ (𝐴 ∩ dom 𝑅) ∧ 𝑦𝑅𝑥) ↔ (𝑦𝐴 ∧ (𝑦 ∈ dom 𝑅𝑦𝑅𝑥)))
109rexbii2 3039 . . . 4 (∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥 ↔ ∃𝑦𝐴 (𝑦 ∈ dom 𝑅𝑦𝑅𝑥))
115, 10bitr4i 267 . . 3 (∃𝑦𝐴 𝑦𝑅𝑥 ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥)
122elima 5471 . . 3 (𝑥 ∈ (𝑅𝐴) ↔ ∃𝑦𝐴 𝑦𝑅𝑥)
132elima 5471 . . 3 (𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅)) ↔ ∃𝑦 ∈ (𝐴 ∩ dom 𝑅)𝑦𝑅𝑥)
1411, 12, 133bitr4i 292 . 2 (𝑥 ∈ (𝑅𝐴) ↔ 𝑥 ∈ (𝑅 “ (𝐴 ∩ dom 𝑅)))
1514eqriv 2619 1 (𝑅𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  wrex 2913  cin 3573   class class class wbr 4653  dom cdm 5114  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  madeval2  31936
  Copyright terms: Public domain W3C validator