MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indifdir Structured version   Visualization version   GIF version

Theorem indifdir 3883
Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.)
Assertion
Ref Expression
indifdir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))

Proof of Theorem indifdir
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm3.24 926 . . . . . . . 8 ¬ (𝑥𝐶 ∧ ¬ 𝑥𝐶)
21intnan 960 . . . . . . 7 ¬ (𝑥𝐴 ∧ (𝑥𝐶 ∧ ¬ 𝑥𝐶))
3 anass 681 . . . . . . 7 (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐶) ↔ (𝑥𝐴 ∧ (𝑥𝐶 ∧ ¬ 𝑥𝐶)))
42, 3mtbir 313 . . . . . 6 ¬ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐶)
54biorfi 422 . . . . 5 (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵) ↔ (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵) ∨ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐶)))
6 an32 839 . . . . 5 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵))
7 andi 911 . . . . 5 (((𝑥𝐴𝑥𝐶) ∧ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐶)) ↔ (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵) ∨ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐶)))
85, 6, 73bitr4i 292 . . . 4 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐶) ∧ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐶)))
9 ianor 509 . . . . 5 (¬ (𝑥𝐵𝑥𝐶) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐶))
109anbi2i 730 . . . 4 (((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐶)))
118, 10bitr4i 267 . . 3 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)))
12 elin 3796 . . . 4 (𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) ↔ (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶))
13 eldif 3584 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
1413anbi1i 731 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶))
1512, 14bitri 264 . . 3 (𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐶))
16 eldif 3584 . . . 4 (𝑥 ∈ ((𝐴𝐶) ∖ (𝐵𝐶)) ↔ (𝑥 ∈ (𝐴𝐶) ∧ ¬ 𝑥 ∈ (𝐵𝐶)))
17 elin 3796 . . . . 5 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
18 elin 3796 . . . . . 6 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
1918notbii 310 . . . . 5 𝑥 ∈ (𝐵𝐶) ↔ ¬ (𝑥𝐵𝑥𝐶))
2017, 19anbi12i 733 . . . 4 ((𝑥 ∈ (𝐴𝐶) ∧ ¬ 𝑥 ∈ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)))
2116, 20bitri 264 . . 3 (𝑥 ∈ ((𝐴𝐶) ∖ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ (𝑥𝐵𝑥𝐶)))
2211, 15, 213bitr4i 292 . 2 (𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) ↔ 𝑥 ∈ ((𝐴𝐶) ∖ (𝐵𝐶)))
2322eqriv 2619 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 383  wa 384   = wceq 1483  wcel 1990  cdif 3571  cin 3573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581
This theorem is referenced by:  preddif  5705  fresaun  6075  uniioombllem4  23354  subsalsal  40577
  Copyright terms: Public domain W3C validator