Proof of Theorem fresaun
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1061 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → 𝐹:𝐴⟶𝐶) |
| 2 | | inss1 3833 |
. . . 4
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| 3 | | fssres 6070 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐶 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶𝐶) |
| 4 | 1, 2, 3 | sylancl 694 |
. . 3
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶𝐶) |
| 5 | | difss 3737 |
. . . . 5
⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
| 6 | | fssres 6070 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐶 ∧ (𝐴 ∖ 𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)⟶𝐶) |
| 7 | 1, 5, 6 | sylancl 694 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)⟶𝐶) |
| 8 | | simp2 1062 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → 𝐺:𝐵⟶𝐶) |
| 9 | | difss 3737 |
. . . . 5
⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 |
| 10 | | fssres 6070 |
. . . . 5
⊢ ((𝐺:𝐵⟶𝐶 ∧ (𝐵 ∖ 𝐴) ⊆ 𝐵) → (𝐺 ↾ (𝐵 ∖ 𝐴)):(𝐵 ∖ 𝐴)⟶𝐶) |
| 11 | 8, 9, 10 | sylancl 694 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐺 ↾ (𝐵 ∖ 𝐴)):(𝐵 ∖ 𝐴)⟶𝐶) |
| 12 | | indifdir 3883 |
. . . . . 6
⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ((𝐴 ∩ (𝐵 ∖ 𝐴)) ∖ (𝐵 ∩ (𝐵 ∖ 𝐴))) |
| 13 | | disjdif 4040 |
. . . . . . 7
⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ |
| 14 | 13 | difeq1i 3724 |
. . . . . 6
⊢ ((𝐴 ∩ (𝐵 ∖ 𝐴)) ∖ (𝐵 ∩ (𝐵 ∖ 𝐴))) = (∅ ∖ (𝐵 ∩ (𝐵 ∖ 𝐴))) |
| 15 | | 0dif 3977 |
. . . . . 6
⊢ (∅
∖ (𝐵 ∩ (𝐵 ∖ 𝐴))) = ∅ |
| 16 | 12, 14, 15 | 3eqtri 2648 |
. . . . 5
⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ |
| 17 | 16 | a1i 11 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅) |
| 18 | | fun2 6067 |
. . . 4
⊢ ((((𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)⟶𝐶 ∧ (𝐺 ↾ (𝐵 ∖ 𝐴)):(𝐵 ∖ 𝐴)⟶𝐶) ∧ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅) → ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))):((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))⟶𝐶) |
| 19 | 7, 11, 17, 18 | syl21anc 1325 |
. . 3
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))):((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))⟶𝐶) |
| 20 | | indi 3873 |
. . . . 5
⊢ ((𝐴 ∩ 𝐵) ∩ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))) = (((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) ∪ ((𝐴 ∩ 𝐵) ∩ (𝐵 ∖ 𝐴))) |
| 21 | | inass 3823 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∩ (𝐵 ∩ (𝐴 ∖ 𝐵))) |
| 22 | | disjdif 4040 |
. . . . . . . 8
⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ |
| 23 | 22 | ineq2i 3811 |
. . . . . . 7
⊢ (𝐴 ∩ (𝐵 ∩ (𝐴 ∖ 𝐵))) = (𝐴 ∩ ∅) |
| 24 | | in0 3968 |
. . . . . . 7
⊢ (𝐴 ∩ ∅) =
∅ |
| 25 | 21, 23, 24 | 3eqtri 2648 |
. . . . . 6
⊢ ((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) = ∅ |
| 26 | | incom 3805 |
. . . . . . . 8
⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
| 27 | 26 | ineq1i 3810 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ((𝐵 ∩ 𝐴) ∩ (𝐵 ∖ 𝐴)) |
| 28 | | inass 3823 |
. . . . . . . 8
⊢ ((𝐵 ∩ 𝐴) ∩ (𝐵 ∖ 𝐴)) = (𝐵 ∩ (𝐴 ∩ (𝐵 ∖ 𝐴))) |
| 29 | 13 | ineq2i 3811 |
. . . . . . . 8
⊢ (𝐵 ∩ (𝐴 ∩ (𝐵 ∖ 𝐴))) = (𝐵 ∩ ∅) |
| 30 | | in0 3968 |
. . . . . . . 8
⊢ (𝐵 ∩ ∅) =
∅ |
| 31 | 28, 29, 30 | 3eqtri 2648 |
. . . . . . 7
⊢ ((𝐵 ∩ 𝐴) ∩ (𝐵 ∖ 𝐴)) = ∅ |
| 32 | 27, 31 | eqtri 2644 |
. . . . . 6
⊢ ((𝐴 ∩ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ |
| 33 | 25, 32 | uneq12i 3765 |
. . . . 5
⊢ (((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) ∪ ((𝐴 ∩ 𝐵) ∩ (𝐵 ∖ 𝐴))) = (∅ ∪
∅) |
| 34 | | un0 3967 |
. . . . 5
⊢ (∅
∪ ∅) = ∅ |
| 35 | 20, 33, 34 | 3eqtri 2648 |
. . . 4
⊢ ((𝐴 ∩ 𝐵) ∩ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))) = ∅ |
| 36 | 35 | a1i 11 |
. . 3
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐴 ∩ 𝐵) ∩ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))) = ∅) |
| 37 | | fun2 6067 |
. . 3
⊢ ((((𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶𝐶 ∧ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))):((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))⟶𝐶) ∧ ((𝐴 ∩ 𝐵) ∩ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))) = ∅) → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))):((𝐴 ∩ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)))⟶𝐶) |
| 38 | 4, 19, 36, 37 | syl21anc 1325 |
. 2
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))):((𝐴 ∩ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)))⟶𝐶) |
| 39 | | ffn 6045 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐶 → 𝐹 Fn 𝐴) |
| 40 | | ffn 6045 |
. . . . 5
⊢ (𝐺:𝐵⟶𝐶 → 𝐺 Fn 𝐵) |
| 41 | | id 22 |
. . . . 5
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) |
| 42 | | resasplit 6074 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) |
| 43 | 39, 40, 41, 42 | syl3an 1368 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) |
| 44 | 43 | feq1d 6030 |
. . 3
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶 ↔ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))):(𝐴 ∪ 𝐵)⟶𝐶)) |
| 45 | | un12 3771 |
. . . . 5
⊢ ((𝐴 ∩ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))) = ((𝐴 ∖ 𝐵) ∪ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) |
| 46 | 26 | uneq1i 3763 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∖ 𝐴)) |
| 47 | | inundif 4046 |
. . . . . . 7
⊢ ((𝐵 ∩ 𝐴) ∪ (𝐵 ∖ 𝐴)) = 𝐵 |
| 48 | 46, 47 | eqtri 2644 |
. . . . . 6
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) = 𝐵 |
| 49 | 48 | uneq2i 3764 |
. . . . 5
⊢ ((𝐴 ∖ 𝐵) ∪ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
| 50 | | undif1 4043 |
. . . . 5
⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
| 51 | 45, 49, 50 | 3eqtri 2648 |
. . . 4
⊢ ((𝐴 ∩ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))) = (𝐴 ∪ 𝐵) |
| 52 | 51 | feq2i 6037 |
. . 3
⊢ (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))):((𝐴 ∩ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)))⟶𝐶 ↔ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))):(𝐴 ∪ 𝐵)⟶𝐶) |
| 53 | 44, 52 | syl6rbbr 279 |
. 2
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))):((𝐴 ∩ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)))⟶𝐶 ↔ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶)) |
| 54 | 38, 53 | mpbid 222 |
1
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |