| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indifdir | Structured version Visualization version Unicode version | ||
| Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.) |
| Ref | Expression |
|---|---|
| indifdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.24 926 |
. . . . . . . 8
| |
| 2 | 1 | intnan 960 |
. . . . . . 7
|
| 3 | anass 681 |
. . . . . . 7
| |
| 4 | 2, 3 | mtbir 313 |
. . . . . 6
|
| 5 | 4 | biorfi 422 |
. . . . 5
|
| 6 | an32 839 |
. . . . 5
| |
| 7 | andi 911 |
. . . . 5
| |
| 8 | 5, 6, 7 | 3bitr4i 292 |
. . . 4
|
| 9 | ianor 509 |
. . . . 5
| |
| 10 | 9 | anbi2i 730 |
. . . 4
|
| 11 | 8, 10 | bitr4i 267 |
. . 3
|
| 12 | elin 3796 |
. . . 4
| |
| 13 | eldif 3584 |
. . . . 5
| |
| 14 | 13 | anbi1i 731 |
. . . 4
|
| 15 | 12, 14 | bitri 264 |
. . 3
|
| 16 | eldif 3584 |
. . . 4
| |
| 17 | elin 3796 |
. . . . 5
| |
| 18 | elin 3796 |
. . . . . 6
| |
| 19 | 18 | notbii 310 |
. . . . 5
|
| 20 | 17, 19 | anbi12i 733 |
. . . 4
|
| 21 | 16, 20 | bitri 264 |
. . 3
|
| 22 | 11, 15, 21 | 3bitr4i 292 |
. 2
|
| 23 | 22 | eqriv 2619 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 |
| This theorem is referenced by: preddif 5705 fresaun 6075 uniioombllem4 23354 subsalsal 40577 |
| Copyright terms: Public domain | W3C validator |