| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > is2ndc | Structured version Visualization version Unicode version | ||
| Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| is2ndc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2ndc 21243 |
. . 3
| |
| 2 | 1 | eleq2i 2693 |
. 2
|
| 3 | simpr 477 |
. . . . 5
| |
| 4 | fvex 6201 |
. . . . 5
| |
| 5 | 3, 4 | syl6eqelr 2710 |
. . . 4
|
| 6 | 5 | rexlimivw 3029 |
. . 3
|
| 7 | eqeq2 2633 |
. . . . 5
| |
| 8 | 7 | anbi2d 740 |
. . . 4
|
| 9 | 8 | rexbidv 3052 |
. . 3
|
| 10 | 6, 9 | elab3 3358 |
. 2
|
| 11 | 2, 10 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 df-fv 5896 df-2ndc 21243 |
| This theorem is referenced by: 2ndctop 21250 2ndci 21251 2ndcsb 21252 2ndcredom 21253 2ndc1stc 21254 2ndcrest 21257 2ndcctbss 21258 2ndcdisj 21259 2ndcomap 21261 2ndcsep 21262 dis2ndc 21263 tx2ndc 21454 |
| Copyright terms: Public domain | W3C validator |