| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . 3
⊢ ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
→ 𝐽 ∈
2nd𝜔) |
| 2 | | is2ndc 21249 |
. . 3
⊢ (𝐽 ∈ 2nd𝜔
↔ ∃𝑐 ∈
TopBases (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽)) |
| 3 | 1, 2 | sylib 208 |
. 2
⊢ ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
→ ∃𝑐 ∈
TopBases (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽)) |
| 4 | | vex 3203 |
. . . . . . 7
⊢ 𝑐 ∈ V |
| 5 | 4, 4 | xpex 6962 |
. . . . . 6
⊢ (𝑐 × 𝑐) ∈ V |
| 6 | | 3simpa 1058 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 (𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣)) → (𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐)) |
| 7 | 6 | ssopab2i 5003 |
. . . . . . 7
⊢
{〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 (𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣))} ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐)} |
| 8 | | 2ndcctbss.3 |
. . . . . . 7
⊢ 𝑆 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 (𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣))} |
| 9 | | df-xp 5120 |
. . . . . . 7
⊢ (𝑐 × 𝑐) = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐)} |
| 10 | 7, 8, 9 | 3sstr4i 3644 |
. . . . . 6
⊢ 𝑆 ⊆ (𝑐 × 𝑐) |
| 11 | | ssdomg 8001 |
. . . . . 6
⊢ ((𝑐 × 𝑐) ∈ V → (𝑆 ⊆ (𝑐 × 𝑐) → 𝑆 ≼ (𝑐 × 𝑐))) |
| 12 | 5, 10, 11 | mp2 9 |
. . . . 5
⊢ 𝑆 ≼ (𝑐 × 𝑐) |
| 13 | 4 | xpdom1 8059 |
. . . . . . . . 9
⊢ (𝑐 ≼ ω → (𝑐 × 𝑐) ≼ (ω × 𝑐)) |
| 14 | | omex 8540 |
. . . . . . . . . 10
⊢ ω
∈ V |
| 15 | 14 | xpdom2 8055 |
. . . . . . . . 9
⊢ (𝑐 ≼ ω → (ω
× 𝑐) ≼ (ω
× ω)) |
| 16 | | domtr 8009 |
. . . . . . . . 9
⊢ (((𝑐 × 𝑐) ≼ (ω × 𝑐) ∧ (ω × 𝑐) ≼ (ω × ω)) →
(𝑐 × 𝑐) ≼ (ω ×
ω)) |
| 17 | 13, 15, 16 | syl2anc 693 |
. . . . . . . 8
⊢ (𝑐 ≼ ω → (𝑐 × 𝑐) ≼ (ω ×
ω)) |
| 18 | | xpomen 8838 |
. . . . . . . 8
⊢ (ω
× ω) ≈ ω |
| 19 | | domentr 8015 |
. . . . . . . 8
⊢ (((𝑐 × 𝑐) ≼ (ω × ω) ∧
(ω × ω) ≈ ω) → (𝑐 × 𝑐) ≼ ω) |
| 20 | 17, 18, 19 | sylancl 694 |
. . . . . . 7
⊢ (𝑐 ≼ ω → (𝑐 × 𝑐) ≼ ω) |
| 21 | 20 | adantr 481 |
. . . . . 6
⊢ ((𝑐 ≼ ω ∧
(topGen‘𝑐) = 𝐽) → (𝑐 × 𝑐) ≼ ω) |
| 22 | 21 | ad2antll 765 |
. . . . 5
⊢ (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) → (𝑐 × 𝑐) ≼ ω) |
| 23 | | domtr 8009 |
. . . . 5
⊢ ((𝑆 ≼ (𝑐 × 𝑐) ∧ (𝑐 × 𝑐) ≼ ω) → 𝑆 ≼ ω) |
| 24 | 12, 22, 23 | sylancr 695 |
. . . 4
⊢ (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) → 𝑆 ≼
ω) |
| 25 | 8 | relopabi 5245 |
. . . . . . . . 9
⊢ Rel 𝑆 |
| 26 | | simpr 477 |
. . . . . . . . 9
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 27 | | 1st2nd 7214 |
. . . . . . . . 9
⊢ ((Rel
𝑆 ∧ 𝑥 ∈ 𝑆) → 𝑥 = 〈(1st ‘𝑥), (2nd ‘𝑥)〉) |
| 28 | 25, 26, 27 | sylancr 695 |
. . . . . . . 8
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ 𝑥 ∈ 𝑆) → 𝑥 = 〈(1st ‘𝑥), (2nd ‘𝑥)〉) |
| 29 | 28, 26 | eqeltrrd 2702 |
. . . . . . 7
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ 𝑥 ∈ 𝑆) → 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ 𝑆) |
| 30 | | df-br 4654 |
. . . . . . . . 9
⊢
((1st ‘𝑥)𝑆(2nd ‘𝑥) ↔ 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ 𝑆) |
| 31 | | fvex 6201 |
. . . . . . . . . 10
⊢
(1st ‘𝑥) ∈ V |
| 32 | | fvex 6201 |
. . . . . . . . . 10
⊢
(2nd ‘𝑥) ∈ V |
| 33 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝑢 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) → 𝑢 = (1st ‘𝑥)) |
| 34 | 33 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ ((𝑢 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) → (𝑢 ∈ 𝑐 ↔ (1st ‘𝑥) ∈ 𝑐)) |
| 35 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝑢 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) → 𝑣 = (2nd ‘𝑥)) |
| 36 | 35 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ ((𝑢 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) → (𝑣 ∈ 𝑐 ↔ (2nd ‘𝑥) ∈ 𝑐)) |
| 37 | | sseq1 3626 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (1st ‘𝑥) → (𝑢 ⊆ 𝑤 ↔ (1st ‘𝑥) ⊆ 𝑤)) |
| 38 | | sseq2 3627 |
. . . . . . . . . . . . 13
⊢ (𝑣 = (2nd ‘𝑥) → (𝑤 ⊆ 𝑣 ↔ 𝑤 ⊆ (2nd ‘𝑥))) |
| 39 | 37, 38 | bi2anan9 917 |
. . . . . . . . . . . 12
⊢ ((𝑢 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) → ((𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣) ↔ ((1st ‘𝑥) ⊆ 𝑤 ∧ 𝑤 ⊆ (2nd ‘𝑥)))) |
| 40 | 39 | rexbidv 3052 |
. . . . . . . . . . 11
⊢ ((𝑢 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) → (∃𝑤 ∈ 𝐵 (𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣) ↔ ∃𝑤 ∈ 𝐵 ((1st ‘𝑥) ⊆ 𝑤 ∧ 𝑤 ⊆ (2nd ‘𝑥)))) |
| 41 | 34, 36, 40 | 3anbi123d 1399 |
. . . . . . . . . 10
⊢ ((𝑢 = (1st ‘𝑥) ∧ 𝑣 = (2nd ‘𝑥)) → ((𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 (𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣)) ↔ ((1st ‘𝑥) ∈ 𝑐 ∧ (2nd ‘𝑥) ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 ((1st ‘𝑥) ⊆ 𝑤 ∧ 𝑤 ⊆ (2nd ‘𝑥))))) |
| 42 | 31, 32, 41, 8 | braba 4992 |
. . . . . . . . 9
⊢
((1st ‘𝑥)𝑆(2nd ‘𝑥) ↔ ((1st ‘𝑥) ∈ 𝑐 ∧ (2nd ‘𝑥) ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 ((1st ‘𝑥) ⊆ 𝑤 ∧ 𝑤 ⊆ (2nd ‘𝑥)))) |
| 43 | 30, 42 | bitr3i 266 |
. . . . . . . 8
⊢
(〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ 𝑆 ↔ ((1st ‘𝑥) ∈ 𝑐 ∧ (2nd ‘𝑥) ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 ((1st ‘𝑥) ⊆ 𝑤 ∧ 𝑤 ⊆ (2nd ‘𝑥)))) |
| 44 | 43 | simp3bi 1078 |
. . . . . . 7
⊢
(〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ 𝑆 → ∃𝑤 ∈ 𝐵 ((1st ‘𝑥) ⊆ 𝑤 ∧ 𝑤 ⊆ (2nd ‘𝑥))) |
| 45 | 29, 44 | syl 17 |
. . . . . 6
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ 𝑥 ∈ 𝑆) → ∃𝑤 ∈ 𝐵 ((1st ‘𝑥) ⊆ 𝑤 ∧ 𝑤 ⊆ (2nd ‘𝑥))) |
| 46 | | fvi 6255 |
. . . . . . . 8
⊢ (𝐵 ∈ TopBases → ( I
‘𝐵) = 𝐵) |
| 47 | 46 | ad3antrrr 766 |
. . . . . . 7
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ 𝑥 ∈ 𝑆) → ( I ‘𝐵) = 𝐵) |
| 48 | 47 | rexeqdv 3145 |
. . . . . 6
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ 𝑥 ∈ 𝑆) → (∃𝑤 ∈ ( I ‘𝐵)((1st ‘𝑥) ⊆ 𝑤 ∧ 𝑤 ⊆ (2nd ‘𝑥)) ↔ ∃𝑤 ∈ 𝐵 ((1st ‘𝑥) ⊆ 𝑤 ∧ 𝑤 ⊆ (2nd ‘𝑥)))) |
| 49 | 45, 48 | mpbird 247 |
. . . . 5
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ 𝑥 ∈ 𝑆) → ∃𝑤 ∈ ( I ‘𝐵)((1st ‘𝑥) ⊆ 𝑤 ∧ 𝑤 ⊆ (2nd ‘𝑥))) |
| 50 | 49 | ralrimiva 2966 |
. . . 4
⊢ (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) → ∀𝑥 ∈ 𝑆 ∃𝑤 ∈ ( I ‘𝐵)((1st ‘𝑥) ⊆ 𝑤 ∧ 𝑤 ⊆ (2nd ‘𝑥))) |
| 51 | | fvex 6201 |
. . . . 5
⊢ ( I
‘𝐵) ∈
V |
| 52 | | sseq2 3627 |
. . . . . 6
⊢ (𝑤 = (𝑓‘𝑥) → ((1st ‘𝑥) ⊆ 𝑤 ↔ (1st ‘𝑥) ⊆ (𝑓‘𝑥))) |
| 53 | | sseq1 3626 |
. . . . . 6
⊢ (𝑤 = (𝑓‘𝑥) → (𝑤 ⊆ (2nd ‘𝑥) ↔ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) |
| 54 | 52, 53 | anbi12d 747 |
. . . . 5
⊢ (𝑤 = (𝑓‘𝑥) → (((1st ‘𝑥) ⊆ 𝑤 ∧ 𝑤 ⊆ (2nd ‘𝑥)) ↔ ((1st
‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) |
| 55 | 51, 54 | axcc4dom 9263 |
. . . 4
⊢ ((𝑆 ≼ ω ∧
∀𝑥 ∈ 𝑆 ∃𝑤 ∈ ( I ‘𝐵)((1st ‘𝑥) ⊆ 𝑤 ∧ 𝑤 ⊆ (2nd ‘𝑥))) → ∃𝑓(𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) |
| 56 | 24, 50, 55 | syl2anc 693 |
. . 3
⊢ (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) → ∃𝑓(𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) |
| 57 | 46 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) → ( I
‘𝐵) = 𝐵) |
| 58 | 57 | feq3d 6032 |
. . . . . 6
⊢ (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) → (𝑓:𝑆⟶( I ‘𝐵) ↔ 𝑓:𝑆⟶𝐵)) |
| 59 | 58 | anbi1d 741 |
. . . . 5
⊢ (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) → ((𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ↔ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))))) |
| 60 | | 2ndctop 21250 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ 2nd𝜔
→ 𝐽 ∈
Top) |
| 61 | 60 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
→ 𝐽 ∈
Top) |
| 62 | 61 | ad2antrr 762 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → 𝐽 ∈ Top) |
| 63 | | frn 6053 |
. . . . . . . . . . . 12
⊢ (𝑓:𝑆⟶𝐵 → ran 𝑓 ⊆ 𝐵) |
| 64 | 63 | ad2antrl 764 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → ran 𝑓 ⊆ 𝐵) |
| 65 | | bastg 20770 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵)) |
| 66 | 65 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → 𝐵 ⊆ (topGen‘𝐵)) |
| 67 | | 2ndcctbss.2 |
. . . . . . . . . . . 12
⊢ 𝐽 = (topGen‘𝐵) |
| 68 | 66, 67 | syl6sseqr 3652 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → 𝐵 ⊆ 𝐽) |
| 69 | 64, 68 | sstrd 3613 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → ran 𝑓 ⊆ 𝐽) |
| 70 | | simprrl 804 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) → 𝑜 ∈ 𝐽) |
| 71 | | simprr 796 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧
(topGen‘𝑐) = 𝐽)) → (topGen‘𝑐) = 𝐽) |
| 72 | 71 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) → (topGen‘𝑐) = 𝐽) |
| 73 | 70, 72 | eleqtrrd 2704 |
. . . . . . . . . . . . . 14
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) → 𝑜 ∈ (topGen‘𝑐)) |
| 74 | | simprrr 805 |
. . . . . . . . . . . . . 14
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) → 𝑡 ∈ 𝑜) |
| 75 | | tg2 20769 |
. . . . . . . . . . . . . 14
⊢ ((𝑜 ∈ (topGen‘𝑐) ∧ 𝑡 ∈ 𝑜) → ∃𝑑 ∈ 𝑐 (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) |
| 76 | 73, 74, 75 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) → ∃𝑑 ∈ 𝑐 (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) |
| 77 | | bastg 20770 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∈ TopBases → 𝑐 ⊆ (topGen‘𝑐)) |
| 78 | 77 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) → 𝑐 ⊆ (topGen‘𝑐)) |
| 79 | 78 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) → 𝑐 ⊆ (topGen‘𝑐)) |
| 80 | 67 | eqeq2i 2634 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((topGen‘𝑐) =
𝐽 ↔
(topGen‘𝑐) =
(topGen‘𝐵)) |
| 81 | 80 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((topGen‘𝑐) =
𝐽 →
(topGen‘𝑐) =
(topGen‘𝐵)) |
| 82 | 81 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑐 ≼ ω ∧
(topGen‘𝑐) = 𝐽) → (topGen‘𝑐) = (topGen‘𝐵)) |
| 83 | 82 | ad2antll 765 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) →
(topGen‘𝑐) =
(topGen‘𝐵)) |
| 84 | 83 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) → (topGen‘𝑐) = (topGen‘𝐵)) |
| 85 | 79, 84 | sseqtrd 3641 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) → 𝑐 ⊆ (topGen‘𝐵)) |
| 86 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) → 𝑑 ∈ 𝑐) |
| 87 | 85, 86 | sseldd 3604 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) → 𝑑 ∈ (topGen‘𝐵)) |
| 88 | | simprrl 804 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) → 𝑡 ∈ 𝑑) |
| 89 | | tg2 20769 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 ∈ (topGen‘𝐵) ∧ 𝑡 ∈ 𝑑) → ∃𝑚 ∈ 𝐵 (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑)) |
| 90 | 87, 88, 89 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢
(((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) → ∃𝑚 ∈ 𝐵 (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑)) |
| 91 | 65 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) → 𝐵 ⊆ (topGen‘𝐵)) |
| 92 | 91 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) → 𝐵 ⊆ (topGen‘𝐵)) |
| 93 | 72 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) → (topGen‘𝑐) = 𝐽) |
| 94 | 93, 67 | syl6req 2673 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) → (topGen‘𝐵) = (topGen‘𝑐)) |
| 95 | 92, 94 | sseqtrd 3641 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) → 𝐵 ⊆ (topGen‘𝑐)) |
| 96 | | simprl 794 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) → 𝑚 ∈ 𝐵) |
| 97 | 95, 96 | sseldd 3604 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) → 𝑚 ∈ (topGen‘𝑐)) |
| 98 | | simprrl 804 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) → 𝑡 ∈ 𝑚) |
| 99 | | tg2 20769 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ (topGen‘𝑐) ∧ 𝑡 ∈ 𝑚) → ∃𝑛 ∈ 𝑐 (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚)) |
| 100 | 97, 98, 99 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) → ∃𝑛 ∈ 𝑐 (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚)) |
| 101 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:𝑆⟶𝐵 → 𝑓 Fn 𝑆) |
| 102 | 101 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜)) → 𝑓 Fn 𝑆) |
| 103 | 102 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) → 𝑓 Fn 𝑆) |
| 104 | 103 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → 𝑓 Fn 𝑆) |
| 105 | | simprl 794 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → 𝑛 ∈ 𝑐) |
| 106 | 86 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → 𝑑 ∈ 𝑐) |
| 107 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → 𝑚 ∈ 𝐵) |
| 108 | | simprrr 805 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → 𝑛 ⊆ 𝑚) |
| 109 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑)) → 𝑚 ⊆ 𝑑) |
| 110 | 109 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → 𝑚 ⊆ 𝑑) |
| 111 | | sseq2 3627 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑚 → (𝑛 ⊆ 𝑤 ↔ 𝑛 ⊆ 𝑚)) |
| 112 | | sseq1 3626 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑚 → (𝑤 ⊆ 𝑑 ↔ 𝑚 ⊆ 𝑑)) |
| 113 | 111, 112 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑚 → ((𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑) ↔ (𝑛 ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑑))) |
| 114 | 113 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ 𝐵 ∧ (𝑛 ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑑)) → ∃𝑤 ∈ 𝐵 (𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑)) |
| 115 | 107, 108,
110, 114 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → ∃𝑤 ∈ 𝐵 (𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑)) |
| 116 | | df-br 4654 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛𝑆𝑑 ↔ 〈𝑛, 𝑑〉 ∈ 𝑆) |
| 117 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑛 ∈ V |
| 118 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑑 ∈ V |
| 119 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑢 = 𝑛 ∧ 𝑣 = 𝑑) → 𝑢 = 𝑛) |
| 120 | 119 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑢 = 𝑛 ∧ 𝑣 = 𝑑) → (𝑢 ∈ 𝑐 ↔ 𝑛 ∈ 𝑐)) |
| 121 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑢 = 𝑛 ∧ 𝑣 = 𝑑) → 𝑣 = 𝑑) |
| 122 | 121 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑢 = 𝑛 ∧ 𝑣 = 𝑑) → (𝑣 ∈ 𝑐 ↔ 𝑑 ∈ 𝑐)) |
| 123 | | sseq1 3626 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = 𝑛 → (𝑢 ⊆ 𝑤 ↔ 𝑛 ⊆ 𝑤)) |
| 124 | | sseq2 3627 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 = 𝑑 → (𝑤 ⊆ 𝑣 ↔ 𝑤 ⊆ 𝑑)) |
| 125 | 123, 124 | bi2anan9 917 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑢 = 𝑛 ∧ 𝑣 = 𝑑) → ((𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣) ↔ (𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑))) |
| 126 | 125 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑢 = 𝑛 ∧ 𝑣 = 𝑑) → (∃𝑤 ∈ 𝐵 (𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣) ↔ ∃𝑤 ∈ 𝐵 (𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑))) |
| 127 | 120, 122,
126 | 3anbi123d 1399 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢 = 𝑛 ∧ 𝑣 = 𝑑) → ((𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 (𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣)) ↔ (𝑛 ∈ 𝑐 ∧ 𝑑 ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 (𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑)))) |
| 128 | 117, 118,
127, 8 | braba 4992 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛𝑆𝑑 ↔ (𝑛 ∈ 𝑐 ∧ 𝑑 ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 (𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑))) |
| 129 | 116, 128 | bitr3i 266 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑛, 𝑑〉 ∈ 𝑆 ↔ (𝑛 ∈ 𝑐 ∧ 𝑑 ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 (𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑))) |
| 130 | 105, 106,
115, 129 | syl3anbrc 1246 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → 〈𝑛, 𝑑〉 ∈ 𝑆) |
| 131 | | fnfvelrn 6356 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 Fn 𝑆 ∧ 〈𝑛, 𝑑〉 ∈ 𝑆) → (𝑓‘〈𝑛, 𝑑〉) ∈ ran 𝑓) |
| 132 | 104, 130,
131 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → (𝑓‘〈𝑛, 𝑑〉) ∈ ran 𝑓) |
| 133 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → 𝑛 ∈ 𝑐) |
| 134 | | simplll 798 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → 𝑑 ∈ 𝑐) |
| 135 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → 𝑚 ∈ 𝐵) |
| 136 | | simprrr 805 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → 𝑛 ⊆ 𝑚) |
| 137 | 109 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → 𝑚 ⊆ 𝑑) |
| 138 | 135, 136,
137, 114 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → ∃𝑤 ∈ 𝐵 (𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑)) |
| 139 | 133, 134,
138, 129 | syl3anbrc 1246 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → 〈𝑛, 𝑑〉 ∈ 𝑆) |
| 140 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 〈𝑛, 𝑑〉 → (1st ‘𝑥) = (1st
‘〈𝑛, 𝑑〉)) |
| 141 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 〈𝑛, 𝑑〉 → (𝑓‘𝑥) = (𝑓‘〈𝑛, 𝑑〉)) |
| 142 | 140, 141 | sseq12d 3634 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 〈𝑛, 𝑑〉 → ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ↔ (1st ‘〈𝑛, 𝑑〉) ⊆ (𝑓‘〈𝑛, 𝑑〉))) |
| 143 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 〈𝑛, 𝑑〉 → (2nd ‘𝑥) = (2nd
‘〈𝑛, 𝑑〉)) |
| 144 | 141, 143 | sseq12d 3634 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 〈𝑛, 𝑑〉 → ((𝑓‘𝑥) ⊆ (2nd ‘𝑥) ↔ (𝑓‘〈𝑛, 𝑑〉) ⊆ (2nd
‘〈𝑛, 𝑑〉))) |
| 145 | 142, 144 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 〈𝑛, 𝑑〉 → (((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)) ↔ ((1st
‘〈𝑛, 𝑑〉) ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ (2nd
‘〈𝑛, 𝑑〉)))) |
| 146 | 145 | rspcv 3305 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈𝑛, 𝑑〉 ∈ 𝑆 → (∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)) → ((1st
‘〈𝑛, 𝑑〉) ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ (2nd
‘〈𝑛, 𝑑〉)))) |
| 147 | 139, 146 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → (∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)) → ((1st
‘〈𝑛, 𝑑〉) ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ (2nd
‘〈𝑛, 𝑑〉)))) |
| 148 | 117, 118 | op1st 7176 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(1st ‘〈𝑛, 𝑑〉) = 𝑛 |
| 149 | 148 | sseq1i 3629 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1st ‘〈𝑛, 𝑑〉) ⊆ (𝑓‘〈𝑛, 𝑑〉) ↔ 𝑛 ⊆ (𝑓‘〈𝑛, 𝑑〉)) |
| 150 | 117, 118 | op2nd 7177 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(2nd ‘〈𝑛, 𝑑〉) = 𝑑 |
| 151 | 150 | sseq2i 3630 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘〈𝑛, 𝑑〉) ⊆ (2nd
‘〈𝑛, 𝑑〉) ↔ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑑) |
| 152 | 149, 151 | anbi12i 733 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((1st ‘〈𝑛, 𝑑〉) ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ (2nd
‘〈𝑛, 𝑑〉)) ↔ (𝑛 ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑑)) |
| 153 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) ∧ (𝑛 ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑑)) → 𝑛 ⊆ (𝑓‘〈𝑛, 𝑑〉)) |
| 154 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚)) → 𝑡 ∈ 𝑛) |
| 155 | 154 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) ∧ (𝑛 ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑑)) → 𝑡 ∈ 𝑛) |
| 156 | 153, 155 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) ∧ (𝑛 ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑑)) → 𝑡 ∈ (𝑓‘〈𝑛, 𝑑〉)) |
| 157 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) ∧ (𝑛 ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑑)) → (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑑) |
| 158 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) → 𝑑 ⊆ 𝑜) |
| 159 | 158 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) ∧ (𝑛 ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑑)) → 𝑑 ⊆ 𝑜) |
| 160 | 157, 159 | sstrd 3613 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) ∧ (𝑛 ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑑)) → (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑜) |
| 161 | 156, 160 | jca 554 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) ∧ (𝑛 ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑑)) → (𝑡 ∈ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑜)) |
| 162 | 161 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → ((𝑛 ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑑) → (𝑡 ∈ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑜))) |
| 163 | 152, 162 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → (((1st
‘〈𝑛, 𝑑〉) ⊆ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ (2nd
‘〈𝑛, 𝑑〉)) → (𝑡 ∈ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑜))) |
| 164 | 147, 163 | syldc 48 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑥 ∈
𝑆 ((1st
‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)) → ((((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → (𝑡 ∈ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑜))) |
| 165 | 164 | exp4c 636 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑥 ∈
𝑆 ((1st
‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)) → ((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) → ((𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑)) → ((𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚)) → (𝑡 ∈ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑜))))) |
| 166 | 165 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜)) → ((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) → ((𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑)) → ((𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚)) → (𝑡 ∈ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑜))))) |
| 167 | 166 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) → ((𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜)) → ((𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑)) → ((𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚)) → (𝑡 ∈ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑜))))) |
| 168 | 167 | imp41 619 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → (𝑡 ∈ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑜)) |
| 169 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = (𝑓‘〈𝑛, 𝑑〉) → (𝑡 ∈ 𝑏 ↔ 𝑡 ∈ (𝑓‘〈𝑛, 𝑑〉))) |
| 170 | | sseq1 3626 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = (𝑓‘〈𝑛, 𝑑〉) → (𝑏 ⊆ 𝑜 ↔ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑜)) |
| 171 | 169, 170 | anbi12d 747 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = (𝑓‘〈𝑛, 𝑑〉) → ((𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜) ↔ (𝑡 ∈ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑜))) |
| 172 | 171 | rspcev 3309 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓‘〈𝑛, 𝑑〉) ∈ ran 𝑓 ∧ (𝑡 ∈ (𝑓‘〈𝑛, 𝑑〉) ∧ (𝑓‘〈𝑛, 𝑑〉) ⊆ 𝑜)) → ∃𝑏 ∈ ran 𝑓(𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜)) |
| 173 | 132, 168,
172 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) ∧ (𝑛 ∈ 𝑐 ∧ (𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚))) → ∃𝑏 ∈ ran 𝑓(𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜)) |
| 174 | 100, 173 | rexlimddv 3035 |
. . . . . . . . . . . . . 14
⊢
((((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) ∧ (𝑚 ∈ 𝐵 ∧ (𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑))) → ∃𝑏 ∈ ran 𝑓(𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜)) |
| 175 | 90, 174 | rexlimddv 3035 |
. . . . . . . . . . . . 13
⊢
(((((𝐵 ∈
TopBases ∧ 𝐽 ∈
2nd𝜔) ∧ (𝑐 ∈ TopBases ∧ (𝑐 ≼ ω ∧ (topGen‘𝑐) = 𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) ∧ (𝑑 ∈ 𝑐 ∧ (𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜))) → ∃𝑏 ∈ ran 𝑓(𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜)) |
| 176 | 76, 175 | rexlimddv 3035 |
. . . . . . . . . . . 12
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) ∧ (𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜))) → ∃𝑏 ∈ ran 𝑓(𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜)) |
| 177 | 176 | expr 643 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → ((𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜) → ∃𝑏 ∈ ran 𝑓(𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜))) |
| 178 | 177 | ralrimivv 2970 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → ∀𝑜 ∈ 𝐽 ∀𝑡 ∈ 𝑜 ∃𝑏 ∈ ran 𝑓(𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜)) |
| 179 | | basgen2 20793 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ ran 𝑓 ⊆ 𝐽 ∧ ∀𝑜 ∈ 𝐽 ∀𝑡 ∈ 𝑜 ∃𝑏 ∈ ran 𝑓(𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜)) → (topGen‘ran 𝑓) = 𝐽) |
| 180 | 62, 69, 178, 179 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → (topGen‘ran
𝑓) = 𝐽) |
| 181 | 180, 62 | eqeltrd 2701 |
. . . . . . . 8
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → (topGen‘ran
𝑓) ∈
Top) |
| 182 | | tgclb 20774 |
. . . . . . . 8
⊢ (ran
𝑓 ∈ TopBases ↔
(topGen‘ran 𝑓) ∈
Top) |
| 183 | 181, 182 | sylibr 224 |
. . . . . . 7
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → ran 𝑓 ∈
TopBases) |
| 184 | | omelon 8543 |
. . . . . . . . . 10
⊢ ω
∈ On |
| 185 | 24 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → 𝑆 ≼ ω) |
| 186 | | ondomen 8860 |
. . . . . . . . . 10
⊢ ((ω
∈ On ∧ 𝑆 ≼
ω) → 𝑆 ∈
dom card) |
| 187 | 184, 185,
186 | sylancr 695 |
. . . . . . . . 9
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → 𝑆 ∈ dom card) |
| 188 | 101 | ad2antrl 764 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → 𝑓 Fn 𝑆) |
| 189 | | dffn4 6121 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑆 ↔ 𝑓:𝑆–onto→ran 𝑓) |
| 190 | 188, 189 | sylib 208 |
. . . . . . . . 9
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → 𝑓:𝑆–onto→ran 𝑓) |
| 191 | | fodomnum 8880 |
. . . . . . . . 9
⊢ (𝑆 ∈ dom card → (𝑓:𝑆–onto→ran 𝑓 → ran 𝑓 ≼ 𝑆)) |
| 192 | 187, 190,
191 | sylc 65 |
. . . . . . . 8
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → ran 𝑓 ≼ 𝑆) |
| 193 | | domtr 8009 |
. . . . . . . 8
⊢ ((ran
𝑓 ≼ 𝑆 ∧ 𝑆 ≼ ω) → ran 𝑓 ≼
ω) |
| 194 | 192, 185,
193 | syl2anc 693 |
. . . . . . 7
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → ran 𝑓 ≼
ω) |
| 195 | 180 | eqcomd 2628 |
. . . . . . 7
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → 𝐽 = (topGen‘ran 𝑓)) |
| 196 | | breq1 4656 |
. . . . . . . . 9
⊢ (𝑏 = ran 𝑓 → (𝑏 ≼ ω ↔ ran 𝑓 ≼
ω)) |
| 197 | | sseq1 3626 |
. . . . . . . . 9
⊢ (𝑏 = ran 𝑓 → (𝑏 ⊆ 𝐵 ↔ ran 𝑓 ⊆ 𝐵)) |
| 198 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑏 = ran 𝑓 → (topGen‘𝑏) = (topGen‘ran 𝑓)) |
| 199 | 198 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (𝑏 = ran 𝑓 → (𝐽 = (topGen‘𝑏) ↔ 𝐽 = (topGen‘ran 𝑓))) |
| 200 | 196, 197,
199 | 3anbi123d 1399 |
. . . . . . . 8
⊢ (𝑏 = ran 𝑓 → ((𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = (topGen‘𝑏)) ↔ (ran 𝑓 ≼ ω ∧ ran 𝑓 ⊆ 𝐵 ∧ 𝐽 = (topGen‘ran 𝑓)))) |
| 201 | 200 | rspcev 3309 |
. . . . . . 7
⊢ ((ran
𝑓 ∈ TopBases ∧
(ran 𝑓 ≼ ω
∧ ran 𝑓 ⊆ 𝐵 ∧ 𝐽 = (topGen‘ran 𝑓))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = (topGen‘𝑏))) |
| 202 | 183, 194,
64, 195, 201 | syl13anc 1328 |
. . . . . 6
⊢ ((((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) ∧ (𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥)))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = (topGen‘𝑏))) |
| 203 | 202 | ex 450 |
. . . . 5
⊢ (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) → ((𝑓:𝑆⟶𝐵 ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = (topGen‘𝑏)))) |
| 204 | 59, 203 | sylbid 230 |
. . . 4
⊢ (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) → ((𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = (topGen‘𝑏)))) |
| 205 | 204 | exlimdv 1861 |
. . 3
⊢ (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) → (∃𝑓(𝑓:𝑆⟶( I ‘𝐵) ∧ ∀𝑥 ∈ 𝑆 ((1st ‘𝑥) ⊆ (𝑓‘𝑥) ∧ (𝑓‘𝑥) ⊆ (2nd ‘𝑥))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = (topGen‘𝑏)))) |
| 206 | 56, 205 | mpd 15 |
. 2
⊢ (((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
∧ (𝑐 ∈ TopBases
∧ (𝑐 ≼ ω
∧ (topGen‘𝑐) =
𝐽))) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = (topGen‘𝑏))) |
| 207 | 3, 206 | rexlimddv 3035 |
1
⊢ ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2nd𝜔)
→ ∃𝑏 ∈
TopBases (𝑏 ≼ ω
∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = (topGen‘𝑏))) |