MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isconngr Structured version   Visualization version   GIF version

Theorem isconngr 27049
Description: The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Hypothesis
Ref Expression
isconngr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isconngr (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
Distinct variable groups:   𝑓,𝑘,𝑛,𝑝,𝐺   𝑘,𝑉,𝑛
Allowed substitution hints:   𝑉(𝑓,𝑝)   𝑊(𝑓,𝑘,𝑛,𝑝)

Proof of Theorem isconngr
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-conngr 27047 . . 3 ConnGraph = {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
21eleq2i 2693 . 2 (𝐺 ∈ ConnGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝})
3 fvex 6201 . . . . . 6 (Vtx‘𝑔) ∈ V
4 raleq 3138 . . . . . . 7 (𝑣 = (Vtx‘𝑔) → (∀𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
54raleqbi1dv 3146 . . . . . 6 (𝑣 = (Vtx‘𝑔) → (∀𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
63, 5sbcie 3470 . . . . 5 ([(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)
76abbii 2739 . . . 4 {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
87eleq2i 2693 . . 3 (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ 𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝})
9 fveq2 6191 . . . . . 6 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
10 isconngr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
119, 10syl6eqr 2674 . . . . 5 ( = 𝐺 → (Vtx‘) = 𝑉)
12 fveq2 6191 . . . . . . . . 9 ( = 𝐺 → (PathsOn‘) = (PathsOn‘𝐺))
1312oveqd 6667 . . . . . . . 8 ( = 𝐺 → (𝑘(PathsOn‘)𝑛) = (𝑘(PathsOn‘𝐺)𝑛))
1413breqd 4664 . . . . . . 7 ( = 𝐺 → (𝑓(𝑘(PathsOn‘)𝑛)𝑝𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
15142exbidv 1852 . . . . . 6 ( = 𝐺 → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
1611, 15raleqbidv 3152 . . . . 5 ( = 𝐺 → (∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∀𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
1711, 16raleqbidv 3152 . . . 4 ( = 𝐺 → (∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
18 fveq2 6191 . . . . . 6 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
19 fveq2 6191 . . . . . . . . . 10 (𝑔 = → (PathsOn‘𝑔) = (PathsOn‘))
2019oveqd 6667 . . . . . . . . 9 (𝑔 = → (𝑘(PathsOn‘𝑔)𝑛) = (𝑘(PathsOn‘)𝑛))
2120breqd 4664 . . . . . . . 8 (𝑔 = → (𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝𝑓(𝑘(PathsOn‘)𝑛)𝑝))
22212exbidv 1852 . . . . . . 7 (𝑔 = → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2318, 22raleqbidv 3152 . . . . . 6 (𝑔 = → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2418, 23raleqbidv 3152 . . . . 5 (𝑔 = → (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2524cbvabv 2747 . . . 4 {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = { ∣ ∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝}
2617, 25elab2g 3353 . . 3 (𝐺𝑊 → (𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
278, 26syl5bb 272 . 2 (𝐺𝑊 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
282, 27syl5bb 272 1 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wral 2912  [wsbc 3435   class class class wbr 4653  cfv 5888  (class class class)co 6650  Vtxcvtx 25874  PathsOncpthson 26610  ConnGraphcconngr 27046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-conngr 27047
This theorem is referenced by:  0conngr  27052  0vconngr  27053  1conngr  27054  conngrv2edg  27055
  Copyright terms: Public domain W3C validator