MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isconngr Structured version   Visualization version   Unicode version

Theorem isconngr 27049
Description: The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Hypothesis
Ref Expression
isconngr.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
isconngr  |-  ( G  e.  W  ->  ( G  e. ConnGraph  <->  A. k  e.  V  A. n  e.  V  E. f E. p  f ( k (PathsOn `  G
) n ) p ) )
Distinct variable groups:    f, k, n, p, G    k, V, n
Allowed substitution hints:    V( f, p)    W( f, k, n, p)

Proof of Theorem isconngr
Dummy variables  g  h  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-conngr 27047 . . 3  |- ConnGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. A. k  e.  v 
A. n  e.  v  E. f E. p  f ( k (PathsOn `  g ) n ) p }
21eleq2i 2693 . 2  |-  ( G  e. ConnGraph 
<->  G  e.  { g  |  [. (Vtx `  g )  /  v ]. A. k  e.  v 
A. n  e.  v  E. f E. p  f ( k (PathsOn `  g ) n ) p } )
3 fvex 6201 . . . . . 6  |-  (Vtx `  g )  e.  _V
4 raleq 3138 . . . . . . 7  |-  ( v  =  (Vtx `  g
)  ->  ( A. n  e.  v  E. f E. p  f ( k (PathsOn `  g
) n ) p  <->  A. n  e.  (Vtx `  g ) E. f E. p  f (
k (PathsOn `  g
) n ) p ) )
54raleqbi1dv 3146 . . . . . 6  |-  ( v  =  (Vtx `  g
)  ->  ( A. k  e.  v  A. n  e.  v  E. f E. p  f ( k (PathsOn `  g
) n ) p  <->  A. k  e.  (Vtx `  g ) A. n  e.  (Vtx `  g ) E. f E. p  f ( k (PathsOn `  g
) n ) p ) )
63, 5sbcie 3470 . . . . 5  |-  ( [. (Vtx `  g )  / 
v ]. A. k  e.  v  A. n  e.  v  E. f E. p  f ( k (PathsOn `  g )
n ) p  <->  A. k  e.  (Vtx `  g ) A. n  e.  (Vtx `  g ) E. f E. p  f (
k (PathsOn `  g
) n ) p )
76abbii 2739 . . . 4  |-  { g  |  [. (Vtx `  g )  /  v ]. A. k  e.  v 
A. n  e.  v  E. f E. p  f ( k (PathsOn `  g ) n ) p }  =  {
g  |  A. k  e.  (Vtx `  g ) A. n  e.  (Vtx `  g ) E. f E. p  f (
k (PathsOn `  g
) n ) p }
87eleq2i 2693 . . 3  |-  ( G  e.  { g  | 
[. (Vtx `  g
)  /  v ]. A. k  e.  v  A. n  e.  v  E. f E. p  f ( k (PathsOn `  g
) n ) p }  <->  G  e.  { g  |  A. k  e.  (Vtx `  g ) A. n  e.  (Vtx `  g ) E. f E. p  f (
k (PathsOn `  g
) n ) p } )
9 fveq2 6191 . . . . . 6  |-  ( h  =  G  ->  (Vtx `  h )  =  (Vtx
`  G ) )
10 isconngr.v . . . . . 6  |-  V  =  (Vtx `  G )
119, 10syl6eqr 2674 . . . . 5  |-  ( h  =  G  ->  (Vtx `  h )  =  V )
12 fveq2 6191 . . . . . . . . 9  |-  ( h  =  G  ->  (PathsOn `  h )  =  (PathsOn `  G ) )
1312oveqd 6667 . . . . . . . 8  |-  ( h  =  G  ->  (
k (PathsOn `  h
) n )  =  ( k (PathsOn `  G
) n ) )
1413breqd 4664 . . . . . . 7  |-  ( h  =  G  ->  (
f ( k (PathsOn `  h ) n ) p  <->  f ( k (PathsOn `  G )
n ) p ) )
15142exbidv 1852 . . . . . 6  |-  ( h  =  G  ->  ( E. f E. p  f ( k (PathsOn `  h
) n ) p  <->  E. f E. p  f ( k (PathsOn `  G
) n ) p ) )
1611, 15raleqbidv 3152 . . . . 5  |-  ( h  =  G  ->  ( A. n  e.  (Vtx `  h ) E. f E. p  f (
k (PathsOn `  h
) n ) p  <->  A. n  e.  V  E. f E. p  f ( k (PathsOn `  G
) n ) p ) )
1711, 16raleqbidv 3152 . . . 4  |-  ( h  =  G  ->  ( A. k  e.  (Vtx `  h ) A. n  e.  (Vtx `  h ) E. f E. p  f ( k (PathsOn `  h
) n ) p  <->  A. k  e.  V  A. n  e.  V  E. f E. p  f ( k (PathsOn `  G
) n ) p ) )
18 fveq2 6191 . . . . . 6  |-  ( g  =  h  ->  (Vtx `  g )  =  (Vtx
`  h ) )
19 fveq2 6191 . . . . . . . . . 10  |-  ( g  =  h  ->  (PathsOn `  g )  =  (PathsOn `  h ) )
2019oveqd 6667 . . . . . . . . 9  |-  ( g  =  h  ->  (
k (PathsOn `  g
) n )  =  ( k (PathsOn `  h
) n ) )
2120breqd 4664 . . . . . . . 8  |-  ( g  =  h  ->  (
f ( k (PathsOn `  g ) n ) p  <->  f ( k (PathsOn `  h )
n ) p ) )
22212exbidv 1852 . . . . . . 7  |-  ( g  =  h  ->  ( E. f E. p  f ( k (PathsOn `  g
) n ) p  <->  E. f E. p  f ( k (PathsOn `  h
) n ) p ) )
2318, 22raleqbidv 3152 . . . . . 6  |-  ( g  =  h  ->  ( A. n  e.  (Vtx `  g ) E. f E. p  f (
k (PathsOn `  g
) n ) p  <->  A. n  e.  (Vtx `  h ) E. f E. p  f (
k (PathsOn `  h
) n ) p ) )
2418, 23raleqbidv 3152 . . . . 5  |-  ( g  =  h  ->  ( A. k  e.  (Vtx `  g ) A. n  e.  (Vtx `  g ) E. f E. p  f ( k (PathsOn `  g
) n ) p  <->  A. k  e.  (Vtx `  h ) A. n  e.  (Vtx `  h ) E. f E. p  f ( k (PathsOn `  h
) n ) p ) )
2524cbvabv 2747 . . . 4  |-  { g  |  A. k  e.  (Vtx `  g ) A. n  e.  (Vtx `  g ) E. f E. p  f (
k (PathsOn `  g
) n ) p }  =  { h  |  A. k  e.  (Vtx
`  h ) A. n  e.  (Vtx `  h
) E. f E. p  f ( k (PathsOn `  h )
n ) p }
2617, 25elab2g 3353 . . 3  |-  ( G  e.  W  ->  ( G  e.  { g  |  A. k  e.  (Vtx
`  g ) A. n  e.  (Vtx `  g
) E. f E. p  f ( k (PathsOn `  g )
n ) p }  <->  A. k  e.  V  A. n  e.  V  E. f E. p  f ( k (PathsOn `  G
) n ) p ) )
278, 26syl5bb 272 . 2  |-  ( G  e.  W  ->  ( G  e.  { g  |  [. (Vtx `  g
)  /  v ]. A. k  e.  v  A. n  e.  v  E. f E. p  f ( k (PathsOn `  g
) n ) p }  <->  A. k  e.  V  A. n  e.  V  E. f E. p  f ( k (PathsOn `  G
) n ) p ) )
282, 27syl5bb 272 1  |-  ( G  e.  W  ->  ( G  e. ConnGraph  <->  A. k  e.  V  A. n  e.  V  E. f E. p  f ( k (PathsOn `  G
) n ) p ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   [.wsbc 3435   class class class wbr 4653   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  PathsOncpthson 26610  ConnGraphcconngr 27046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-conngr 27047
This theorem is referenced by:  0conngr  27052  0vconngr  27053  1conngr  27054  conngrv2edg  27055
  Copyright terms: Public domain W3C validator