MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscph Structured version   Visualization version   GIF version

Theorem iscph 22970
Description: A subcomplex pre-Hilbert space is a pre-Hilbert space over a quadratically closed subfield of the field of complex numbers, with a norm defined. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
iscph.v 𝑉 = (Base‘𝑊)
iscph.h , = (·𝑖𝑊)
iscph.n 𝑁 = (norm‘𝑊)
iscph.f 𝐹 = (Scalar‘𝑊)
iscph.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
iscph (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
Distinct variable group:   𝑥,𝑊
Allowed substitution hints:   𝐹(𝑥)   , (𝑥)   𝐾(𝑥)   𝑁(𝑥)   𝑉(𝑥)

Proof of Theorem iscph
Dummy variables 𝑓 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . . . 5 (𝑊 ∈ (PreHil ∩ NrmMod) ↔ (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod))
21anbi1i 731 . . . 4 ((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)))
3 df-3an 1039 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)))
42, 3bitr4i 267 . . 3 ((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ↔ (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)))
54anbi1i 731 . 2 (((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
6 fvexd 6203 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
7 fvexd 6203 . . . . . 6 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) ∈ V)
8 simplr 792 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = (Scalar‘𝑤))
9 simpll 790 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑤 = 𝑊)
109fveq2d 6195 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Scalar‘𝑤) = (Scalar‘𝑊))
11 iscph.f . . . . . . . . . . 11 𝐹 = (Scalar‘𝑊)
1210, 11syl6eqr 2674 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Scalar‘𝑤) = 𝐹)
138, 12eqtrd 2656 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = 𝐹)
14 simpr 477 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = (Base‘𝑓))
1513fveq2d 6195 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑓) = (Base‘𝐹))
16 iscph.k . . . . . . . . . . . 12 𝐾 = (Base‘𝐹)
1715, 16syl6eqr 2674 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑓) = 𝐾)
1814, 17eqtrd 2656 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = 𝐾)
1918oveq2d 6666 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (ℂflds 𝑘) = (ℂflds 𝐾))
2013, 19eqeq12d 2637 . . . . . . . 8 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑓 = (ℂflds 𝑘) ↔ 𝐹 = (ℂflds 𝐾)))
2118ineq1d 3813 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑘 ∩ (0[,)+∞)) = (𝐾 ∩ (0[,)+∞)))
2221imaeq2d 5466 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (√ “ (𝑘 ∩ (0[,)+∞))) = (√ “ (𝐾 ∩ (0[,)+∞))))
2322, 18sseq12d 3634 . . . . . . . 8 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ↔ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾))
249fveq2d 6195 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (norm‘𝑤) = (norm‘𝑊))
25 iscph.n . . . . . . . . . 10 𝑁 = (norm‘𝑊)
2624, 25syl6eqr 2674 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (norm‘𝑤) = 𝑁)
279fveq2d 6195 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑤) = (Base‘𝑊))
28 iscph.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
2927, 28syl6eqr 2674 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (Base‘𝑤) = 𝑉)
309fveq2d 6195 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (·𝑖𝑤) = (·𝑖𝑊))
31 iscph.h . . . . . . . . . . . . 13 , = (·𝑖𝑊)
3230, 31syl6eqr 2674 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (·𝑖𝑤) = , )
3332oveqd 6667 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑥(·𝑖𝑤)𝑥) = (𝑥 , 𝑥))
3433fveq2d 6195 . . . . . . . . . 10 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (√‘(𝑥(·𝑖𝑤)𝑥)) = (√‘(𝑥 , 𝑥)))
3529, 34mpteq12dv 4733 . . . . . . . . 9 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
3626, 35eqeq12d 2637 . . . . . . . 8 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))) ↔ 𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
3720, 23, 363anbi123d 1399 . . . . . . 7 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
38 3anass 1042 . . . . . . 7 ((𝐹 = (ℂflds 𝐾) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
3937, 38syl6bb 276 . . . . . 6 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
407, 39sbcied 3472 . . . . 5 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ([(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
416, 40sbcied 3472 . . . 4 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))) ↔ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
42 df-cph 22968 . . . 4 ℂPreHil = {𝑤 ∈ (PreHil ∩ NrmMod) ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))))}
4341, 42elrab2 3366 . . 3 (𝑊 ∈ ℂPreHil ↔ (𝑊 ∈ (PreHil ∩ NrmMod) ∧ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
44 anass 681 . . 3 (((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))) ↔ (𝑊 ∈ (PreHil ∩ NrmMod) ∧ (𝐹 = (ℂflds 𝐾) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))))
4543, 44bitr4i 267 . 2 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ (PreHil ∩ NrmMod) ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
46 3anass 1042 . 2 (((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))) ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ ((√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))))
475, 45, 463bitr4i 292 1 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = (ℂflds 𝐾)) ∧ (√ “ (𝐾 ∩ (0[,)+∞))) ⊆ 𝐾𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  [wsbc 3435  cin 3573  wss 3574  cmpt 4729  cima 5117  cfv 5888  (class class class)co 6650  0cc0 9936  +∞cpnf 10071  [,)cico 12177  csqrt 13973  Basecbs 15857  s cress 15858  Scalarcsca 15944  ·𝑖cip 15946  fldccnfld 19746  PreHilcphl 19969  normcnm 22381  NrmModcnlm 22385  ℂPreHilccph 22966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-ov 6653  df-cph 22968
This theorem is referenced by:  cphphl  22971  cphnlm  22972  cphsca  22979  cphsqrtcl  22984  cphnmfval  22992  tchcph  23036
  Copyright terms: Public domain W3C validator