MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscplgr Structured version   Visualization version   Unicode version

Theorem iscplgr 26310
Description: The property of being a complete graph. (Contributed by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
iscplgr.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
iscplgr  |-  ( G  e.  W  ->  ( G  e. ComplGraph  <->  A. v  e.  V  v  e.  (UnivVtx `  G
) ) )
Distinct variable groups:    v, G    v, V
Allowed substitution hint:    W( v)

Proof of Theorem iscplgr
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( g  =  G  ->  (Vtx `  g )  =  (Vtx
`  G ) )
2 iscplgr.v . . . 4  |-  V  =  (Vtx `  G )
31, 2syl6eqr 2674 . . 3  |-  ( g  =  G  ->  (Vtx `  g )  =  V )
4 fveq2 6191 . . . 4  |-  ( g  =  G  ->  (UnivVtx `  g )  =  (UnivVtx `  G ) )
54eleq2d 2687 . . 3  |-  ( g  =  G  ->  (
v  e.  (UnivVtx `  g
)  <->  v  e.  (UnivVtx `  G ) ) )
63, 5raleqbidv 3152 . 2  |-  ( g  =  G  ->  ( A. v  e.  (Vtx `  g ) v  e.  (UnivVtx `  g )  <->  A. v  e.  V  v  e.  (UnivVtx `  G
) ) )
7 df-cplgr 26231 . 2  |- ComplGraph  =  {
g  |  A. v  e.  (Vtx `  g )
v  e.  (UnivVtx `  g
) }
86, 7elab2g 3353 1  |-  ( G  e.  W  ->  ( G  e. ComplGraph  <->  A. v  e.  V  v  e.  (UnivVtx `  G
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  Vtxcvtx 25874  UnivVtxcuvtxa 26225  ComplGraphccplgr 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-cplgr 26231
This theorem is referenced by:  cplgruvtxb  26311  iscplgrnb  26312  iscusgrvtx  26317  cplgr0  26321  cplgr0v  26323  cplgr1v  26326  cplgr2v  26328  cusgrexi  26339  structtocusgr  26342  cusgrres  26344
  Copyright terms: Public domain W3C validator