Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pcmplfin Structured version   Visualization version   GIF version

Theorem pcmplfin 29927
Description: Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement 𝑣 that is locally finite. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Hypothesis
Ref Expression
pcmplfin.x 𝑋 = 𝐽
Assertion
Ref Expression
pcmplfin ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
Distinct variable groups:   𝑣,𝐽   𝑣,𝑈
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem pcmplfin
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . . . 4 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑈𝐽)
2 ssexg 4804 . . . . . . 7 ((𝑈𝐽𝐽 ∈ Paracomp) → 𝑈 ∈ V)
32ancoms 469 . . . . . 6 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽) → 𝑈 ∈ V)
433adant3 1081 . . . . 5 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑈 ∈ V)
5 elpwg 4166 . . . . 5 (𝑈 ∈ V → (𝑈 ∈ 𝒫 𝐽𝑈𝐽))
64, 5syl 17 . . . 4 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → (𝑈 ∈ 𝒫 𝐽𝑈𝐽))
71, 6mpbird 247 . . 3 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑈 ∈ 𝒫 𝐽)
8 ispcmp 29924 . . . . . 6 (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽))
9 pcmplfin.x . . . . . . 7 𝑋 = 𝐽
109iscref 29911 . . . . . 6 (𝐽 ∈ CovHasRef(LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢)))
118, 10bitri 264 . . . . 5 (𝐽 ∈ Paracomp ↔ (𝐽 ∈ Top ∧ ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢)))
1211simprbi 480 . . . 4 (𝐽 ∈ Paracomp → ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢))
13123ad2ant1 1082 . . 3 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢))
14 simp3 1063 . . 3 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → 𝑋 = 𝑈)
15 unieq 4444 . . . . . 6 (𝑢 = 𝑈 𝑢 = 𝑈)
1615eqeq2d 2632 . . . . 5 (𝑢 = 𝑈 → (𝑋 = 𝑢𝑋 = 𝑈))
17 breq2 4657 . . . . . 6 (𝑢 = 𝑈 → (𝑣Ref𝑢𝑣Ref𝑈))
1817rexbidv 3052 . . . . 5 (𝑢 = 𝑈 → (∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢 ↔ ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈))
1916, 18imbi12d 334 . . . 4 (𝑢 = 𝑈 → ((𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢) ↔ (𝑋 = 𝑈 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)))
2019rspcv 3305 . . 3 (𝑈 ∈ 𝒫 𝐽 → (∀𝑢 ∈ 𝒫 𝐽(𝑋 = 𝑢 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑢) → (𝑋 = 𝑈 → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)))
217, 13, 14, 20syl3c 66 . 2 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈)
22 elin 3796 . . . . 5 (𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ↔ (𝑣 ∈ 𝒫 𝐽𝑣 ∈ (LocFin‘𝐽)))
2322anbi1i 731 . . . 4 ((𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑣Ref𝑈) ↔ ((𝑣 ∈ 𝒫 𝐽𝑣 ∈ (LocFin‘𝐽)) ∧ 𝑣Ref𝑈))
24 anass 681 . . . 4 (((𝑣 ∈ 𝒫 𝐽𝑣 ∈ (LocFin‘𝐽)) ∧ 𝑣Ref𝑈) ↔ (𝑣 ∈ 𝒫 𝐽 ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)))
2523, 24bitri 264 . . 3 ((𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽)) ∧ 𝑣Ref𝑈) ↔ (𝑣 ∈ 𝒫 𝐽 ∧ (𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)))
2625rexbii2 3039 . 2 (∃𝑣 ∈ (𝒫 𝐽 ∩ (LocFin‘𝐽))𝑣Ref𝑈 ↔ ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
2721, 26sylib 208 1 ((𝐽 ∈ Paracomp ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436   class class class wbr 4653  cfv 5888  Topctop 20698  Refcref 21305  LocFinclocfin 21307  CovHasRefccref 29909  Paracompcpcmp 29922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-cref 29910  df-pcmp 29923
This theorem is referenced by:  pcmplfinf  29928
  Copyright terms: Public domain W3C validator