![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isgbe | Structured version Visualization version GIF version |
Description: The predicate "is an even Goldbach number". An even Goldbach number is an even integer having a Goldbach partition, i.e. which can be written as a sum of two odd primes. (Contributed by AV, 20-Jul-2020.) |
Ref | Expression |
---|---|
isgbe | ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2626 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 = (𝑝 + 𝑞) ↔ 𝑍 = (𝑝 + 𝑞))) | |
2 | 1 | 3anbi3d 1405 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞)) ↔ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) |
3 | 2 | 2rexbidv 3057 | . 2 ⊢ (𝑧 = 𝑍 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞)) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) |
4 | df-gbe 41636 | . 2 ⊢ GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))} | |
5 | 3, 4 | elrab2 3366 | 1 ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 (class class class)co 6650 + caddc 9939 ℙcprime 15385 Even ceven 41537 Odd codd 41538 GoldbachEven cgbe 41633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-gbe 41636 |
This theorem is referenced by: gbeeven 41642 gbepos 41646 gbegt5 41649 6gbe 41659 8gbe 41661 sbgoldbwt 41665 sbgoldbst 41666 sbgoldbalt 41669 nnsum3primesgbe 41680 bgoldbtbndlem4 41696 bgoldbtbnd 41697 |
Copyright terms: Public domain | W3C validator |