Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbalt Structured version   Visualization version   GIF version

Theorem sbgoldbalt 41669
Description: An alternate (related to the original) formulation of the binary Goldbach conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
sbgoldbalt (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Distinct variable group:   𝑛,𝑝,𝑞

Proof of Theorem sbgoldbalt
StepHypRef Expression
1 2z 11409 . . . . . 6 2 ∈ ℤ
2 evenz 41543 . . . . . 6 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
3 zltp1le 11427 . . . . . 6 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 < 𝑛 ↔ (2 + 1) ≤ 𝑛))
41, 2, 3sylancr 695 . . . . 5 (𝑛 ∈ Even → (2 < 𝑛 ↔ (2 + 1) ≤ 𝑛))
5 2p1e3 11151 . . . . . . 7 (2 + 1) = 3
65breq1i 4660 . . . . . 6 ((2 + 1) ≤ 𝑛 ↔ 3 ≤ 𝑛)
7 3re 11094 . . . . . . . . 9 3 ∈ ℝ
87a1i 11 . . . . . . . 8 (𝑛 ∈ Even → 3 ∈ ℝ)
92zred 11482 . . . . . . . 8 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
108, 9leloed 10180 . . . . . . 7 (𝑛 ∈ Even → (3 ≤ 𝑛 ↔ (3 < 𝑛 ∨ 3 = 𝑛)))
11 3z 11410 . . . . . . . . . . . 12 3 ∈ ℤ
12 zltp1le 11427 . . . . . . . . . . . 12 ((3 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (3 < 𝑛 ↔ (3 + 1) ≤ 𝑛))
1311, 2, 12sylancr 695 . . . . . . . . . . 11 (𝑛 ∈ Even → (3 < 𝑛 ↔ (3 + 1) ≤ 𝑛))
14 3p1e4 11153 . . . . . . . . . . . . 13 (3 + 1) = 4
1514breq1i 4660 . . . . . . . . . . . 12 ((3 + 1) ≤ 𝑛 ↔ 4 ≤ 𝑛)
16 4re 11097 . . . . . . . . . . . . . . 15 4 ∈ ℝ
1716a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ Even → 4 ∈ ℝ)
1817, 9leloed 10180 . . . . . . . . . . . . 13 (𝑛 ∈ Even → (4 ≤ 𝑛 ↔ (4 < 𝑛 ∨ 4 = 𝑛)))
19 pm3.35 611 . . . . . . . . . . . . . . . . . 18 ((4 < 𝑛 ∧ (4 < 𝑛𝑛 ∈ GoldbachEven )) → 𝑛 ∈ GoldbachEven )
20 isgbe 41639 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ GoldbachEven ↔ (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
21 simp3 1063 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞))
2221a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ Even ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞)))
2322reximdva 3017 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Even ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2423reximdva 3017 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2524imp 445 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
2620, 25sylbi 207 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ GoldbachEven → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
2726a1d 25 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ GoldbachEven → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2819, 27syl 17 . . . . . . . . . . . . . . . . 17 ((4 < 𝑛 ∧ (4 < 𝑛𝑛 ∈ GoldbachEven )) → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2928ex 450 . . . . . . . . . . . . . . . 16 (4 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑛 ∈ Even → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
3029com23 86 . . . . . . . . . . . . . . 15 (4 < 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
31 2prm 15405 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℙ
32 2p2e4 11144 . . . . . . . . . . . . . . . . . . . 20 (2 + 2) = 4
3332eqcomi 2631 . . . . . . . . . . . . . . . . . . 19 4 = (2 + 2)
34 rspceov 6692 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℙ ∧ 2 ∈ ℙ ∧ 4 = (2 + 2)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞))
3531, 31, 33, 34mp3an 1424 . . . . . . . . . . . . . . . . . 18 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞)
36 eqeq1 2626 . . . . . . . . . . . . . . . . . . 19 (4 = 𝑛 → (4 = (𝑝 + 𝑞) ↔ 𝑛 = (𝑝 + 𝑞)))
37362rexbidv 3057 . . . . . . . . . . . . . . . . . 18 (4 = 𝑛 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 4 = (𝑝 + 𝑞) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
3835, 37mpbii 223 . . . . . . . . . . . . . . . . 17 (4 = 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))
3938a1d 25 . . . . . . . . . . . . . . . 16 (4 = 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
4039a1d 25 . . . . . . . . . . . . . . 15 (4 = 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4130, 40jaoi 394 . . . . . . . . . . . . . 14 ((4 < 𝑛 ∨ 4 = 𝑛) → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4241com12 32 . . . . . . . . . . . . 13 (𝑛 ∈ Even → ((4 < 𝑛 ∨ 4 = 𝑛) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4318, 42sylbid 230 . . . . . . . . . . . 12 (𝑛 ∈ Even → (4 ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4415, 43syl5bi 232 . . . . . . . . . . 11 (𝑛 ∈ Even → ((3 + 1) ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4513, 44sylbid 230 . . . . . . . . . 10 (𝑛 ∈ Even → (3 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
4645com12 32 . . . . . . . . 9 (3 < 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
47 3odd 41617 . . . . . . . . . . . 12 3 ∈ Odd
48 eleq1 2689 . . . . . . . . . . . 12 (3 = 𝑛 → (3 ∈ Odd ↔ 𝑛 ∈ Odd ))
4947, 48mpbii 223 . . . . . . . . . . 11 (3 = 𝑛𝑛 ∈ Odd )
50 oddneven 41557 . . . . . . . . . . 11 (𝑛 ∈ Odd → ¬ 𝑛 ∈ Even )
5149, 50syl 17 . . . . . . . . . 10 (3 = 𝑛 → ¬ 𝑛 ∈ Even )
5251pm2.21d 118 . . . . . . . . 9 (3 = 𝑛 → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5346, 52jaoi 394 . . . . . . . 8 ((3 < 𝑛 ∨ 3 = 𝑛) → (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5453com12 32 . . . . . . 7 (𝑛 ∈ Even → ((3 < 𝑛 ∨ 3 = 𝑛) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5510, 54sylbid 230 . . . . . 6 (𝑛 ∈ Even → (3 ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
566, 55syl5bi 232 . . . . 5 (𝑛 ∈ Even → ((2 + 1) ≤ 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
574, 56sylbid 230 . . . 4 (𝑛 ∈ Even → (2 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
5857com23 86 . . 3 (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
59 2lt4 11198 . . . . . . . 8 2 < 4
60 2re 11090 . . . . . . . . . 10 2 ∈ ℝ
6160a1i 11 . . . . . . . . 9 (𝑛 ∈ Even → 2 ∈ ℝ)
62 lttr 10114 . . . . . . . . 9 ((2 ∈ ℝ ∧ 4 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((2 < 4 ∧ 4 < 𝑛) → 2 < 𝑛))
6361, 17, 9, 62syl3anc 1326 . . . . . . . 8 (𝑛 ∈ Even → ((2 < 4 ∧ 4 < 𝑛) → 2 < 𝑛))
6459, 63mpani 712 . . . . . . 7 (𝑛 ∈ Even → (4 < 𝑛 → 2 < 𝑛))
6564imp 445 . . . . . 6 ((𝑛 ∈ Even ∧ 4 < 𝑛) → 2 < 𝑛)
66 simpll 790 . . . . . . . . 9 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ Even )
67 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
6867anim1i 592 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ))
6968adantr 481 . . . . . . . . . . . . . . 15 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ))
70 simpll 790 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑛 ∈ Even ∧ 4 < 𝑛))
7170anim1i 592 . . . . . . . . . . . . . . . 16 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → ((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑛 = (𝑝 + 𝑞)))
72 df-3an 1039 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 = (𝑝 + 𝑞)) ↔ ((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑛 = (𝑝 + 𝑞)))
7371, 72sylibr 224 . . . . . . . . . . . . . . 15 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑛 ∈ Even ∧ 4 < 𝑛𝑛 = (𝑝 + 𝑞)))
74 sbgoldbaltlem2 41668 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd )))
7569, 73, 74sylc 65 . . . . . . . . . . . . . 14 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ))
76 simpr 477 . . . . . . . . . . . . . 14 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → 𝑛 = (𝑝 + 𝑞))
77 df-3an 1039 . . . . . . . . . . . . . 14 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ 𝑛 = (𝑝 + 𝑞)))
7875, 76, 77sylanbrc 698 . . . . . . . . . . . . 13 (((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ 𝑛 = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))
7978ex 450 . . . . . . . . . . . 12 ((((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑛 = (𝑝 + 𝑞) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8079reximdva 3017 . . . . . . . . . . 11 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8180reximdva 3017 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8281imp 445 . . . . . . . . 9 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))
8366, 82jca 554 . . . . . . . 8 (((𝑛 ∈ Even ∧ 4 < 𝑛) ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞))))
8483ex 450 . . . . . . 7 ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → (𝑛 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = (𝑝 + 𝑞)))))
8584, 20syl6ibr 242 . . . . . 6 ((𝑛 ∈ Even ∧ 4 < 𝑛) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) → 𝑛 ∈ GoldbachEven ))
8665, 85embantd 59 . . . . 5 ((𝑛 ∈ Even ∧ 4 < 𝑛) → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ GoldbachEven ))
8786ex 450 . . . 4 (𝑛 ∈ Even → (4 < 𝑛 → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → 𝑛 ∈ GoldbachEven )))
8887com23 86 . . 3 (𝑛 ∈ Even → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (4 < 𝑛𝑛 ∈ GoldbachEven )))
8958, 88impbid 202 . 2 (𝑛 ∈ Even → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))))
9089ralbiia 2979 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913   class class class wbr 4653  (class class class)co 6650  cr 9935  1c1 9937   + caddc 9939   < clt 10074  cle 10075  2c2 11070  3c3 11071  4c4 11072  cz 11377  cprime 15385   Even ceven 41537   Odd codd 41538   GoldbachEven cgbe 41633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-even 41539  df-odd 41540  df-gbe 41636
This theorem is referenced by:  sbgoldbb  41670  sbgoldbmb  41674
  Copyright terms: Public domain W3C validator