Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isgbow Structured version   Visualization version   GIF version

Theorem isgbow 41640
Description: The predicate "is a weak odd Goldbach number". A weak odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as a sum of three primes. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
isgbow (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
Distinct variable group:   𝑍,𝑝,𝑞,𝑟

Proof of Theorem isgbow
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2626 . . . 4 (𝑧 = 𝑍 → (𝑧 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
21rexbidv 3052 . . 3 (𝑧 = 𝑍 → (∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
322rexbidv 3057 . 2 (𝑧 = 𝑍 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
4 df-gbow 41637 . 2 GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)}
53, 4elrab2 3366 1 (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  (class class class)co 6650   + caddc 9939  cprime 15385   Odd codd 41538   GoldbachOddW cgbow 41634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-gbow 41637
This theorem is referenced by:  gbowodd  41643  gbogbow  41644  gbowpos  41647  gbowgt5  41650  gbowge7  41651  7gbow  41660  sbgoldbwt  41665  sbgoldbm  41672  nnsum4primesodd  41684
  Copyright terms: Public domain W3C validator