Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbtbndlem4 Structured version   Visualization version   GIF version

Theorem bgoldbtbndlem4 41696
Description: Lemma 4 for bgoldbtbnd 41697. (Contributed by AV, 1-Aug-2020.)
Hypotheses
Ref Expression
bgoldbtbnd.m (𝜑𝑀 ∈ (ℤ11))
bgoldbtbnd.n (𝜑𝑁 ∈ (ℤ11))
bgoldbtbnd.b (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ))
bgoldbtbnd.d (𝜑𝐷 ∈ (ℤ‘3))
bgoldbtbnd.f (𝜑𝐹 ∈ (RePart‘𝐷))
bgoldbtbnd.i (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
bgoldbtbnd.0 (𝜑 → (𝐹‘0) = 7)
bgoldbtbnd.1 (𝜑 → (𝐹‘1) = 13)
bgoldbtbnd.l (𝜑𝑀 < (𝐹𝐷))
bgoldbtbnd.r (𝜑 → (𝐹𝐷) ∈ ℝ)
Assertion
Ref Expression
bgoldbtbndlem4 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁   𝐷,𝑝,𝑞,𝑟   𝐹,𝑝,𝑞,𝑟   𝐼,𝑝,𝑞,𝑟   𝑛,𝑁   𝑋,𝑝,𝑞,𝑟   𝜑,𝑝,𝑞,𝑟
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐷(𝑛)   𝐹(𝑛)   𝐼(𝑛)   𝑀(𝑖,𝑛,𝑟,𝑞,𝑝)   𝑁(𝑟,𝑞,𝑝)   𝑋(𝑖,𝑛)

Proof of Theorem bgoldbtbndlem4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . 3 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → 𝜑)
2 simpr 477 . . 3 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → 𝑋 ∈ Odd )
3 simplr 792 . . 3 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → 𝐼 ∈ (1..^𝐷))
4 bgoldbtbnd.m . . . 4 (𝜑𝑀 ∈ (ℤ11))
5 bgoldbtbnd.n . . . 4 (𝜑𝑁 ∈ (ℤ11))
6 bgoldbtbnd.b . . . 4 (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ))
7 bgoldbtbnd.d . . . 4 (𝜑𝐷 ∈ (ℤ‘3))
8 bgoldbtbnd.f . . . 4 (𝜑𝐹 ∈ (RePart‘𝐷))
9 bgoldbtbnd.i . . . 4 (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
10 bgoldbtbnd.0 . . . 4 (𝜑 → (𝐹‘0) = 7)
11 bgoldbtbnd.1 . . . 4 (𝜑 → (𝐹‘1) = 13)
12 bgoldbtbnd.l . . . 4 (𝜑𝑀 < (𝐹𝐷))
13 eqid 2622 . . . 4 (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑋 − (𝐹‘(𝐼 − 1)))
144, 5, 6, 7, 8, 9, 10, 11, 12, 13bgoldbtbndlem2 41694 . . 3 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1))))))
151, 2, 3, 14syl3anc 1326 . 2 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1))))))
16 breq2 4657 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (4 < 𝑛 ↔ 4 < 𝑚))
17 breq1 4656 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑛 < 𝑁𝑚 < 𝑁))
1816, 17anbi12d 747 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((4 < 𝑛𝑛 < 𝑁) ↔ (4 < 𝑚𝑚 < 𝑁)))
19 eleq1 2689 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑛 ∈ GoldbachEven ↔ 𝑚 ∈ GoldbachEven ))
2018, 19imbi12d 334 . . . . . . . . . 10 (𝑛 = 𝑚 → (((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) ↔ ((4 < 𝑚𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven )))
2120cbvralv 3171 . . . . . . . . 9 (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑚 ∈ Even ((4 < 𝑚𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven ))
22 breq2 4657 . . . . . . . . . . . 12 (𝑚 = (𝑋 − (𝐹‘(𝐼 − 1))) → (4 < 𝑚 ↔ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))))
23 breq1 4656 . . . . . . . . . . . 12 (𝑚 = (𝑋 − (𝐹‘(𝐼 − 1))) → (𝑚 < 𝑁 ↔ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁))
2422, 23anbi12d 747 . . . . . . . . . . 11 (𝑚 = (𝑋 − (𝐹‘(𝐼 − 1))) → ((4 < 𝑚𝑚 < 𝑁) ↔ (4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁)))
25 eleq1 2689 . . . . . . . . . . 11 (𝑚 = (𝑋 − (𝐹‘(𝐼 − 1))) → (𝑚 ∈ GoldbachEven ↔ (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ))
2624, 25imbi12d 334 . . . . . . . . . 10 (𝑚 = (𝑋 − (𝐹‘(𝐼 − 1))) → (((4 < 𝑚𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven ) ↔ ((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven )))
2726rspcv 3305 . . . . . . . . 9 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (∀𝑚 ∈ Even ((4 < 𝑚𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven ) → ((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven )))
2821, 27syl5bi 232 . . . . . . . 8 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → ((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven )))
29 id 22 . . . . . . . . . . 11 (((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ) → ((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ))
30 isgbe 41639 . . . . . . . . . . . . 13 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ↔ ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))))
31 simp1 1061 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝐹𝑖) ∈ (ℙ ∖ {2}))
3231ralimi 2952 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}))
33 elfzo1 12517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐼 ∈ (1..^𝐷) ↔ (𝐼 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐼 < 𝐷))
34 nnm1nn0 11334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0)
35343ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐼 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐼 < 𝐷) → (𝐼 − 1) ∈ ℕ0)
3633, 35sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) ∈ ℕ0)
3736a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐷 ∈ (ℤ‘3) → (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) ∈ ℕ0))
38 eluzge3nn 11730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐷 ∈ (ℤ‘3) → 𝐷 ∈ ℕ)
3938a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐷 ∈ (ℤ‘3) → (𝐼 ∈ (1..^𝐷) → 𝐷 ∈ ℕ))
40 elfzo2 12473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐼 ∈ (1..^𝐷) ↔ (𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷))
41 eluzelre 11698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐼 ∈ (ℤ‘1) → 𝐼 ∈ ℝ)
4241adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → 𝐼 ∈ ℝ)
4342ltm1d 10956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → (𝐼 − 1) < 𝐼)
44 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → 1 ∈ ℝ)
4542, 44resubcld 10458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → (𝐼 − 1) ∈ ℝ)
46 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐷 ∈ ℤ → 𝐷 ∈ ℝ)
4746adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℝ)
48 lttr 10114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐼 − 1) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (((𝐼 − 1) < 𝐼𝐼 < 𝐷) → (𝐼 − 1) < 𝐷))
4945, 42, 47, 48syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → (((𝐼 − 1) < 𝐼𝐼 < 𝐷) → (𝐼 − 1) < 𝐷))
5043, 49mpand 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ) → (𝐼 < 𝐷 → (𝐼 − 1) < 𝐷))
51503impia 1261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → (𝐼 − 1) < 𝐷)
5240, 51sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) < 𝐷)
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐷 ∈ (ℤ‘3) → (𝐼 ∈ (1..^𝐷) → (𝐼 − 1) < 𝐷))
5437, 39, 533jcad 1243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐷 ∈ (ℤ‘3) → (𝐼 ∈ (1..^𝐷) → ((𝐼 − 1) ∈ ℕ0𝐷 ∈ ℕ ∧ (𝐼 − 1) < 𝐷)))
557, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝐼 ∈ (1..^𝐷) → ((𝐼 − 1) ∈ ℕ0𝐷 ∈ ℕ ∧ (𝐼 − 1) < 𝐷)))
5655imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝐼 ∈ (1..^𝐷)) → ((𝐼 − 1) ∈ ℕ0𝐷 ∈ ℕ ∧ (𝐼 − 1) < 𝐷))
57 elfzo0 12508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐼 − 1) ∈ (0..^𝐷) ↔ ((𝐼 − 1) ∈ ℕ0𝐷 ∈ ℕ ∧ (𝐼 − 1) < 𝐷))
5856, 57sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝐼 ∈ (1..^𝐷)) → (𝐼 − 1) ∈ (0..^𝐷))
59 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖 = (𝐼 − 1) → (𝐹𝑖) = (𝐹‘(𝐼 − 1)))
6059eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 = (𝐼 − 1) → ((𝐹𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})))
6160rspcv 3305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐼 − 1) ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})))
6258, 61syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2})))
63 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℙ)
6462, 63syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℙ))
6564expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐼 ∈ (1..^𝐷) → (𝜑 → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℙ)))
6665com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℙ)))
6732, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℙ)))
689, 67mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℙ))
6968adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℙ))
7069imp 445 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 − 1)) ∈ ℙ)
7170ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) → (𝐹‘(𝐼 − 1)) ∈ ℙ)
7271ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → (𝐹‘(𝐼 − 1)) ∈ ℙ)
73 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 = (𝐹‘(𝐼 − 1)) → (𝑟 ∈ Odd ↔ (𝐹‘(𝐼 − 1)) ∈ Odd ))
74733anbi3d 1405 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = (𝐹‘(𝐼 − 1)) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd )))
75 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 = (𝐹‘(𝐼 − 1)) → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))
7675eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = (𝐹‘(𝐼 − 1)) → (𝑋 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1)))))
7774, 76anbi12d 747 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = (𝐹‘(𝐼 − 1)) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))))
7877adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) ∧ 𝑟 = (𝐹‘(𝐼 − 1))) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))))
79 oddprmALTV 41598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ Odd )
8062, 79syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ Odd ))
8180expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ (1..^𝐷) → (𝜑 → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ Odd )))
8281com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ Odd )))
8332, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ Odd )))
849, 83mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ Odd ))
8584adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ Odd ))
8685imp 445 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 − 1)) ∈ Odd )
8786ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝐹‘(𝐼 − 1)) ∈ Odd )
88 3simpa 1058 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ))
8987, 88anim12ci 591 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ))
90 df-3an 1039 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ))
9189, 90sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ))
92 oddz 41544 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑋 ∈ Odd → 𝑋 ∈ ℤ)
9392zcnd 11483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑋 ∈ Odd → 𝑋 ∈ ℂ)
9493adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → 𝑋 ∈ ℂ)
9594ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑋 ∈ ℂ)
9695adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑋 ∈ ℂ)
97 prmz 15389 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐹‘(𝐼 − 1)) ∈ ℙ → (𝐹‘(𝐼 − 1)) ∈ ℤ)
9897zcnd 11483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐹‘(𝐼 − 1)) ∈ ℙ → (𝐹‘(𝐼 − 1)) ∈ ℂ)
9963, 98syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐹‘(𝐼 − 1)) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
10062, 99syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝐼 ∈ (1..^𝐷)) → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℂ))
101100expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐼 ∈ (1..^𝐷) → (𝜑 → (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝐹‘(𝐼 − 1)) ∈ ℂ)))
102101com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∀𝑖 ∈ (0..^𝐷)(𝐹𝑖) ∈ (ℙ ∖ {2}) → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℂ)))
10332, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℂ)))
1049, 103mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℂ))
105104adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 − 1)) ∈ ℂ))
106105imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
107106ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
108107adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → (𝐹‘(𝐼 − 1)) ∈ ℂ)
10996, 108npcand 10396 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → ((𝑋 − (𝐹‘(𝐼 − 1))) + (𝐹‘(𝐼 − 1))) = 𝑋)
110 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞) → ((𝑋 − (𝐹‘(𝐼 − 1))) + (𝐹‘(𝐼 − 1))) = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))
111109, 110sylan9req 2677 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))
112111exp31 630 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) → (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞) → 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))))
113112com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) → ((𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞) → (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))))
1141133impia 1261 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1)))))
115114impcom 446 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1))))
11691, 115jca 554 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘(𝐼 − 1)) ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + (𝐹‘(𝐼 − 1)))))
11772, 78, 116rspcedvd 3317 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))
118117ex 450 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))
119118reximdva 3017 . . . . . . . . . . . . . . . . 17 ((((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))
120119reximdva 3017 . . . . . . . . . . . . . . . 16 (((((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ 𝜑) ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))
121120exp41 638 . . . . . . . . . . . . . . 15 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))))))
122121com25 99 . . . . . . . . . . . . . 14 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞)) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))))))
123122imp 445 . . . . . . . . . . . . 13 (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑋 − (𝐹‘(𝐼 − 1))) = (𝑝 + 𝑞))) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))
12430, 123sylbi 207 . . . . . . . . . . . 12 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))
125124a1d 25 . . . . . . . . . . 11 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven → ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))))))
12629, 125syl6com 37 . . . . . . . . . 10 ((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ) → ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))))
127126ancoms 469 . . . . . . . . 9 (((𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → (((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ) → ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))))
128127com13 88 . . . . . . . 8 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (((4 < (𝑋 − (𝐹‘(𝐼 − 1))) ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁) → (𝑋 − (𝐹‘(𝐼 − 1))) ∈ GoldbachEven ) → (((𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))))
12928, 128syld 47 . . . . . . 7 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → (((𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))))
130129com23 86 . . . . . 6 ((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even → (((𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))))
1311303impib 1262 . . . . 5 (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))))))
132131com15 101 . . . 4 (𝜑 → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))))))
1336, 132mpd 15 . . 3 (𝜑 → (𝐼 ∈ (1..^𝐷) → (𝑋 ∈ Odd → (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))))
134133imp31 448 . 2 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → (((𝑋 − (𝐹‘(𝐼 − 1))) ∈ Even ∧ (𝑋 − (𝐹‘(𝐼 − 1))) < 𝑁 ∧ 4 < (𝑋 − (𝐹‘(𝐼 − 1)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))
13515, 134syld 47 1 (((𝜑𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹𝐼)) ≤ 4) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cdif 3571  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cn 11020  2c2 11070  3c3 11071  4c4 11072  7c7 11075  0cn0 11292  cz 11377  cdc 11493  cuz 11687  [,)cico 12177  ..^cfzo 12465  cprime 15385  RePartciccp 41349   Even ceven 41537   Odd codd 41538   GoldbachEven cgbe 41633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-iccp 41350  df-even 41539  df-odd 41540  df-gbe 41636
This theorem is referenced by:  bgoldbtbnd  41697
  Copyright terms: Public domain W3C validator