Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isgbow Structured version   Visualization version   Unicode version

Theorem isgbow 41640
Description: The predicate "is a weak odd Goldbach number". A weak odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as a sum of three primes. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
isgbow  |-  ( Z  e. GoldbachOddW 
<->  ( Z  e. Odd  /\  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  Z  =  ( ( p  +  q )  +  r ) ) )
Distinct variable group:    Z, p, q, r

Proof of Theorem isgbow
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2626 . . . 4  |-  ( z  =  Z  ->  (
z  =  ( ( p  +  q )  +  r )  <->  Z  =  ( ( p  +  q )  +  r ) ) )
21rexbidv 3052 . . 3  |-  ( z  =  Z  ->  ( E. r  e.  Prime  z  =  ( ( p  +  q )  +  r )  <->  E. r  e.  Prime  Z  =  ( ( p  +  q )  +  r ) ) )
322rexbidv 3057 . 2  |-  ( z  =  Z  ->  ( E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  z  =  ( ( p  +  q )  +  r )  <->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  Z  =  ( ( p  +  q )  +  r ) ) )
4 df-gbow 41637 . 2  |- GoldbachOddW  =  {
z  e. Odd  |  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  z  =  ( ( p  +  q )  +  r ) }
53, 4elrab2 3366 1  |-  ( Z  e. GoldbachOddW 
<->  ( Z  e. Odd  /\  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  Z  =  ( ( p  +  q )  +  r ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913  (class class class)co 6650    + caddc 9939   Primecprime 15385   Odd codd 41538   GoldbachOddW cgbow 41634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-gbow 41637
This theorem is referenced by:  gbowodd  41643  gbogbow  41644  gbowpos  41647  gbowgt5  41650  gbowge7  41651  7gbow  41660  sbgoldbwt  41665  sbgoldbm  41672  nnsum4primesodd  41684
  Copyright terms: Public domain W3C validator