| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isgbow | Structured version Visualization version Unicode version | ||
| Description: The predicate "is a weak odd Goldbach number". A weak odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as a sum of three primes. (Contributed by AV, 20-Jul-2020.) |
| Ref | Expression |
|---|---|
| isgbow |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2626 |
. . . 4
| |
| 2 | 1 | rexbidv 3052 |
. . 3
|
| 3 | 2 | 2rexbidv 3057 |
. 2
|
| 4 | df-gbow 41637 |
. 2
| |
| 5 | 3, 4 | elrab2 3366 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-gbow 41637 |
| This theorem is referenced by: gbowodd 41643 gbogbow 41644 gbowpos 41647 gbowgt5 41650 gbowge7 41651 7gbow 41660 sbgoldbwt 41665 sbgoldbm 41672 nnsum4primesodd 41684 |
| Copyright terms: Public domain | W3C validator |