![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isline2 | Structured version Visualization version GIF version |
Description: Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
isline2.j | ⊢ ∨ = (join‘𝐾) |
isline2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
isline2.n | ⊢ 𝑁 = (Lines‘𝐾) |
isline2.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
isline2 | ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | isline2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | isline2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | isline2.n | . . 3 ⊢ 𝑁 = (Lines‘𝐾) | |
5 | 1, 2, 3, 4 | isline 35025 | . 2 ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
6 | simpl 473 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐾 ∈ Lat) | |
7 | eqid 2622 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
8 | 7, 3 | atbase 34576 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) |
9 | 8 | ad2antrl 764 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑝 ∈ (Base‘𝐾)) |
10 | 7, 3 | atbase 34576 | . . . . . . . 8 ⊢ (𝑞 ∈ 𝐴 → 𝑞 ∈ (Base‘𝐾)) |
11 | 10 | ad2antll 765 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ (Base‘𝐾)) |
12 | 7, 2 | latjcl 17051 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) |
13 | 6, 9, 11, 12 | syl3anc 1326 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) |
14 | isline2.m | . . . . . . 7 ⊢ 𝑀 = (pmap‘𝐾) | |
15 | 7, 1, 3, 14 | pmapval 35043 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∨ 𝑞) ∈ (Base‘𝐾)) → (𝑀‘(𝑝 ∨ 𝑞)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}) |
16 | 13, 15 | syldan 487 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑀‘(𝑝 ∨ 𝑞)) = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}) |
17 | 16 | eqeq2d 2632 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑋 = (𝑀‘(𝑝 ∨ 𝑞)) ↔ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)})) |
18 | 17 | anbi2d 740 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ((𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))) ↔ (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
19 | 18 | 2rexbidva 3056 | . 2 ⊢ (𝐾 ∈ Lat → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = {𝑟 ∈ 𝐴 ∣ 𝑟(le‘𝐾)(𝑝 ∨ 𝑞)}))) |
20 | 5, 19 | bitr4d 271 | 1 ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑀‘(𝑝 ∨ 𝑞))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∃wrex 2913 {crab 2916 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 lecple 15948 joincjn 16944 Latclat 17045 Atomscatm 34550 Linesclines 34780 pmapcpmap 34783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-lat 17046 df-ats 34554 df-lines 34787 df-pmap 34790 |
This theorem is referenced by: isline3 35062 lncvrelatN 35067 linepsubclN 35237 |
Copyright terms: Public domain | W3C validator |