Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismntoplly Structured version   Visualization version   GIF version

Theorem ismntoplly 30069
Description: Property of being a manifold. (Contributed by Thierry Arnoux, 28-Dec-2019.)
Assertion
Ref Expression
ismntoplly ((𝑁 ∈ ℕ0𝐽𝑉) → (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2nd𝜔 ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )))

Proof of Theorem ismntoplly
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . 5 ((𝑛 = 𝑁𝑗 = 𝐽) → 𝑛 = 𝑁)
21eleq1d 2686 . . . 4 ((𝑛 = 𝑁𝑗 = 𝐽) → (𝑛 ∈ ℕ0𝑁 ∈ ℕ0))
3 simpr 477 . . . . . 6 ((𝑛 = 𝑁𝑗 = 𝐽) → 𝑗 = 𝐽)
43eleq1d 2686 . . . . 5 ((𝑛 = 𝑁𝑗 = 𝐽) → (𝑗 ∈ 2nd𝜔 ↔ 𝐽 ∈ 2nd𝜔))
53eleq1d 2686 . . . . 5 ((𝑛 = 𝑁𝑗 = 𝐽) → (𝑗 ∈ Haus ↔ 𝐽 ∈ Haus))
6 fveq2 6191 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝔼hil𝑛) = (𝔼hil𝑁))
76fveq2d 6195 . . . . . . . . 9 (𝑛 = 𝑁 → (TopOpen‘(𝔼hil𝑛)) = (TopOpen‘(𝔼hil𝑁)))
87eceq1d 7783 . . . . . . . 8 (𝑛 = 𝑁 → [(TopOpen‘(𝔼hil𝑛))] ≃ = [(TopOpen‘(𝔼hil𝑁))] ≃ )
9 llyeq 21273 . . . . . . . 8 ([(TopOpen‘(𝔼hil𝑛))] ≃ = [(TopOpen‘(𝔼hil𝑁))] ≃ → Locally [(TopOpen‘(𝔼hil𝑛))] ≃ = Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )
108, 9syl 17 . . . . . . 7 (𝑛 = 𝑁 → Locally [(TopOpen‘(𝔼hil𝑛))] ≃ = Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )
1110adantr 481 . . . . . 6 ((𝑛 = 𝑁𝑗 = 𝐽) → Locally [(TopOpen‘(𝔼hil𝑛))] ≃ = Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )
123, 11eleq12d 2695 . . . . 5 ((𝑛 = 𝑁𝑗 = 𝐽) → (𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ↔ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ))
134, 5, 123anbi123d 1399 . . . 4 ((𝑛 = 𝑁𝑗 = 𝐽) → ((𝑗 ∈ 2nd𝜔 ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ) ↔ (𝐽 ∈ 2nd𝜔 ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )))
142, 13anbi12d 747 . . 3 ((𝑛 = 𝑁𝑗 = 𝐽) → ((𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2nd𝜔 ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ )) ↔ (𝑁 ∈ ℕ0 ∧ (𝐽 ∈ 2nd𝜔 ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ))))
15 df-mntop 30067 . . 3 ManTop = {⟨𝑛, 𝑗⟩ ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2nd𝜔 ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ))}
1614, 15brabga 4989 . 2 ((𝑁 ∈ ℕ0𝐽𝑉) → (𝑁ManTop𝐽 ↔ (𝑁 ∈ ℕ0 ∧ (𝐽 ∈ 2nd𝜔 ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ))))
17 simpl 473 . . 3 ((𝑁 ∈ ℕ0𝐽𝑉) → 𝑁 ∈ ℕ0)
1817biantrurd 529 . 2 ((𝑁 ∈ ℕ0𝐽𝑉) → ((𝐽 ∈ 2nd𝜔 ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ) ↔ (𝑁 ∈ ℕ0 ∧ (𝐽 ∈ 2nd𝜔 ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ ))))
1916, 18bitr4d 271 1 ((𝑁 ∈ ℕ0𝐽𝑉) → (𝑁ManTop𝐽 ↔ (𝐽 ∈ 2nd𝜔 ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [(TopOpen‘(𝔼hil𝑁))] ≃ )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  [cec 7740  0cn0 11292  TopOpenctopn 16082  Hauscha 21112  2nd𝜔c2ndc 21241  Locally clly 21267  chmph 21557  𝔼hilcehl 23172  ManTopcmntop 30066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-ec 7744  df-lly 21269  df-mntop 30067
This theorem is referenced by:  ismntop  30070
  Copyright terms: Public domain W3C validator