Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismntoplly Structured version   Visualization version   Unicode version

Theorem ismntoplly 30069
Description: Property of being a manifold. (Contributed by Thierry Arnoux, 28-Dec-2019.)
Assertion
Ref Expression
ismntoplly  |-  ( ( N  e.  NN0  /\  J  e.  V )  ->  ( NManTop J  <->  ( J  e.  2ndc  /\  J  e.  Haus  /\  J  e. Locally  [ (
TopOpen `  (𝔼hil `  N ) ) ]  ~=  ) ) )

Proof of Theorem ismntoplly
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . 5  |-  ( ( n  =  N  /\  j  =  J )  ->  n  =  N )
21eleq1d 2686 . . . 4  |-  ( ( n  =  N  /\  j  =  J )  ->  ( n  e.  NN0  <->  N  e.  NN0 ) )
3 simpr 477 . . . . . 6  |-  ( ( n  =  N  /\  j  =  J )  ->  j  =  J )
43eleq1d 2686 . . . . 5  |-  ( ( n  =  N  /\  j  =  J )  ->  ( j  e.  2ndc  <->  J  e.  2ndc ) )
53eleq1d 2686 . . . . 5  |-  ( ( n  =  N  /\  j  =  J )  ->  ( j  e.  Haus  <->  J  e.  Haus ) )
6 fveq2 6191 . . . . . . . . . 10  |-  ( n  =  N  ->  (𝔼hil `  n
)  =  (𝔼hil `  N
) )
76fveq2d 6195 . . . . . . . . 9  |-  ( n  =  N  ->  ( TopOpen
`  (𝔼hil `  n ) )  =  ( TopOpen `  (𝔼hil `  N ) ) )
87eceq1d 7783 . . . . . . . 8  |-  ( n  =  N  ->  [ (
TopOpen `  (𝔼hil `  n ) ) ]  ~=  =  [ (
TopOpen `  (𝔼hil `  N ) ) ]  ~=  )
9 llyeq 21273 . . . . . . . 8  |-  ( [ ( TopOpen `  (𝔼hil `  n ) ) ]  ~=  =  [ (
TopOpen `  (𝔼hil `  N ) ) ]  ~=  -> Locally  [ ( TopOpen `  (𝔼hil `  n ) ) ]  ~=  = Locally  [ ( TopOpen
`  (𝔼hil `  N ) ) ]  ~=  )
108, 9syl 17 . . . . . . 7  |-  ( n  =  N  -> Locally  [ (
TopOpen `  (𝔼hil `  n ) ) ]  ~=  = Locally  [ ( TopOpen
`  (𝔼hil `  N ) ) ]  ~=  )
1110adantr 481 . . . . . 6  |-  ( ( n  =  N  /\  j  =  J )  -> Locally  [ ( TopOpen `  (𝔼hil `  n
) ) ]  ~=  = Locally  [ ( TopOpen `  (𝔼hil `  N
) ) ]  ~=  )
123, 11eleq12d 2695 . . . . 5  |-  ( ( n  =  N  /\  j  =  J )  ->  ( j  e. Locally  [ (
TopOpen `  (𝔼hil `  n ) ) ]  ~=  <->  J  e. Locally  [ (
TopOpen `  (𝔼hil `  N ) ) ]  ~=  ) )
134, 5, 123anbi123d 1399 . . . 4  |-  ( ( n  =  N  /\  j  =  J )  ->  ( ( j  e. 
2ndc  /\  j  e.  Haus  /\  j  e. Locally  [ ( TopOpen
`  (𝔼hil `  n ) ) ]  ~=  )  <->  ( J  e.  2ndc  /\  J  e.  Haus  /\  J  e. Locally  [ (
TopOpen `  (𝔼hil `  N ) ) ]  ~=  ) ) )
142, 13anbi12d 747 . . 3  |-  ( ( n  =  N  /\  j  =  J )  ->  ( ( n  e. 
NN0  /\  ( j  e.  2ndc  /\  j  e.  Haus  /\  j  e. Locally  [ (
TopOpen `  (𝔼hil `  n ) ) ]  ~=  ) )  <->  ( N  e.  NN0  /\  ( J  e.  2ndc  /\  J  e. 
Haus  /\  J  e. Locally  [ (
TopOpen `  (𝔼hil `  N ) ) ]  ~=  ) ) ) )
15 df-mntop 30067 . . 3  |- ManTop  =  { <. n ,  j >.  |  ( n  e. 
NN0  /\  ( j  e.  2ndc  /\  j  e.  Haus  /\  j  e. Locally  [ (
TopOpen `  (𝔼hil `  n ) ) ]  ~=  ) ) }
1614, 15brabga 4989 . 2  |-  ( ( N  e.  NN0  /\  J  e.  V )  ->  ( NManTop J  <->  ( N  e.  NN0  /\  ( J  e.  2ndc  /\  J  e. 
Haus  /\  J  e. Locally  [ (
TopOpen `  (𝔼hil `  N ) ) ]  ~=  ) ) ) )
17 simpl 473 . . 3  |-  ( ( N  e.  NN0  /\  J  e.  V )  ->  N  e.  NN0 )
1817biantrurd 529 . 2  |-  ( ( N  e.  NN0  /\  J  e.  V )  ->  ( ( J  e. 
2ndc  /\  J  e.  Haus  /\  J  e. Locally  [ ( TopOpen
`  (𝔼hil `  N ) ) ]  ~=  )  <->  ( N  e.  NN0  /\  ( J  e.  2ndc  /\  J  e. 
Haus  /\  J  e. Locally  [ (
TopOpen `  (𝔼hil `  N ) ) ]  ~=  ) ) ) )
1916, 18bitr4d 271 1  |-  ( ( N  e.  NN0  /\  J  e.  V )  ->  ( NManTop J  <->  ( J  e.  2ndc  /\  J  e.  Haus  /\  J  e. Locally  [ (
TopOpen `  (𝔼hil `  N ) ) ]  ~=  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888   [cec 7740   NN0cn0 11292   TopOpenctopn 16082   Hauscha 21112   2ndcc2ndc 21241  Locally clly 21267    ~= chmph 21557  𝔼hilcehl 23172  ManTopcmntop 30066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-ec 7744  df-lly 21269  df-mntop 30067
This theorem is referenced by:  ismntop  30070
  Copyright terms: Public domain W3C validator