| Step | Hyp | Ref
| Expression |
| 1 | | df-obs 20049 |
. . . . 5
⊢ OBasis =
(ℎ ∈ PreHil ↦
{𝑏 ∈ 𝒫
(Base‘ℎ) ∣
(∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ∧ ((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)})}) |
| 2 | 1 | dmmptss 5631 |
. . . 4
⊢ dom
OBasis ⊆ PreHil |
| 3 | | elfvdm 6220 |
. . . 4
⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ dom OBasis) |
| 4 | 2, 3 | sseldi 3601 |
. . 3
⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil) |
| 5 | | fveq2 6191 |
. . . . . . . . 9
⊢ (ℎ = 𝑊 → (Base‘ℎ) = (Base‘𝑊)) |
| 6 | | isobs.v |
. . . . . . . . 9
⊢ 𝑉 = (Base‘𝑊) |
| 7 | 5, 6 | syl6eqr 2674 |
. . . . . . . 8
⊢ (ℎ = 𝑊 → (Base‘ℎ) = 𝑉) |
| 8 | 7 | pweqd 4163 |
. . . . . . 7
⊢ (ℎ = 𝑊 → 𝒫 (Base‘ℎ) = 𝒫 𝑉) |
| 9 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑊 →
(·𝑖‘ℎ) =
(·𝑖‘𝑊)) |
| 10 | | isobs.h |
. . . . . . . . . . . 12
⊢ , =
(·𝑖‘𝑊) |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑊 →
(·𝑖‘ℎ) = , ) |
| 12 | 11 | oveqd 6667 |
. . . . . . . . . 10
⊢ (ℎ = 𝑊 → (𝑥(·𝑖‘ℎ)𝑦) = (𝑥 , 𝑦)) |
| 13 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑊 → (Scalar‘ℎ) = (Scalar‘𝑊)) |
| 14 | | isobs.f |
. . . . . . . . . . . . . 14
⊢ 𝐹 = (Scalar‘𝑊) |
| 15 | 13, 14 | syl6eqr 2674 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑊 → (Scalar‘ℎ) = 𝐹) |
| 16 | 15 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑊 →
(1r‘(Scalar‘ℎ)) = (1r‘𝐹)) |
| 17 | | isobs.u |
. . . . . . . . . . . 12
⊢ 1 =
(1r‘𝐹) |
| 18 | 16, 17 | syl6eqr 2674 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑊 →
(1r‘(Scalar‘ℎ)) = 1 ) |
| 19 | 15 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑊 →
(0g‘(Scalar‘ℎ)) = (0g‘𝐹)) |
| 20 | | isobs.z |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐹) |
| 21 | 19, 20 | syl6eqr 2674 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑊 →
(0g‘(Scalar‘ℎ)) = 0 ) |
| 22 | 18, 21 | ifeq12d 4106 |
. . . . . . . . . 10
⊢ (ℎ = 𝑊 → if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) = if(𝑥 = 𝑦, 1 , 0 )) |
| 23 | 12, 22 | eqeq12d 2637 |
. . . . . . . . 9
⊢ (ℎ = 𝑊 → ((𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ↔ (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ))) |
| 24 | 23 | 2ralbidv 2989 |
. . . . . . . 8
⊢ (ℎ = 𝑊 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ↔ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ))) |
| 25 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑊 → (ocv‘ℎ) = (ocv‘𝑊)) |
| 26 | | isobs.o |
. . . . . . . . . . 11
⊢ ⊥ =
(ocv‘𝑊) |
| 27 | 25, 26 | syl6eqr 2674 |
. . . . . . . . . 10
⊢ (ℎ = 𝑊 → (ocv‘ℎ) = ⊥ ) |
| 28 | 27 | fveq1d 6193 |
. . . . . . . . 9
⊢ (ℎ = 𝑊 → ((ocv‘ℎ)‘𝑏) = ( ⊥ ‘𝑏)) |
| 29 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑊 → (0g‘ℎ) = (0g‘𝑊)) |
| 30 | | isobs.y |
. . . . . . . . . . 11
⊢ 𝑌 = (0g‘𝑊) |
| 31 | 29, 30 | syl6eqr 2674 |
. . . . . . . . . 10
⊢ (ℎ = 𝑊 → (0g‘ℎ) = 𝑌) |
| 32 | 31 | sneqd 4189 |
. . . . . . . . 9
⊢ (ℎ = 𝑊 → {(0g‘ℎ)} = {𝑌}) |
| 33 | 28, 32 | eqeq12d 2637 |
. . . . . . . 8
⊢ (ℎ = 𝑊 → (((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)} ↔ ( ⊥ ‘𝑏) = {𝑌})) |
| 34 | 24, 33 | anbi12d 747 |
. . . . . . 7
⊢ (ℎ = 𝑊 → ((∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ∧ ((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)}) ↔ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥ ‘𝑏) = {𝑌}))) |
| 35 | 8, 34 | rabeqbidv 3195 |
. . . . . 6
⊢ (ℎ = 𝑊 → {𝑏 ∈ 𝒫 (Base‘ℎ) ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ∧ ((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)})} = {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥ ‘𝑏) = {𝑌})}) |
| 36 | | fvex 6201 |
. . . . . . . . 9
⊢
(Base‘𝑊)
∈ V |
| 37 | 6, 36 | eqeltri 2697 |
. . . . . . . 8
⊢ 𝑉 ∈ V |
| 38 | 37 | pwex 4848 |
. . . . . . 7
⊢ 𝒫
𝑉 ∈ V |
| 39 | 38 | rabex 4813 |
. . . . . 6
⊢ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝑏) = {𝑌})} ∈ V |
| 40 | 35, 1, 39 | fvmpt 6282 |
. . . . 5
⊢ (𝑊 ∈ PreHil →
(OBasis‘𝑊) = {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝑏) = {𝑌})}) |
| 41 | 40 | eleq2d 2687 |
. . . 4
⊢ (𝑊 ∈ PreHil → (𝐵 ∈ (OBasis‘𝑊) ↔ 𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝑏) = {𝑌})})) |
| 42 | | raleq 3138 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ))) |
| 43 | 42 | raleqbi1dv 3146 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ))) |
| 44 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ( ⊥ ‘𝑏) = ( ⊥ ‘𝐵)) |
| 45 | 44 | eqeq1d 2624 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (( ⊥ ‘𝑏) = {𝑌} ↔ ( ⊥ ‘𝐵) = {𝑌})) |
| 46 | 43, 45 | anbi12d 747 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝑏) = {𝑌}) ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌}))) |
| 47 | 46 | elrab 3363 |
. . . . 5
⊢ (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝑏) = {𝑌})} ↔ (𝐵 ∈ 𝒫 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌}))) |
| 48 | 37 | elpw2 4828 |
. . . . . 6
⊢ (𝐵 ∈ 𝒫 𝑉 ↔ 𝐵 ⊆ 𝑉) |
| 49 | 48 | anbi1i 731 |
. . . . 5
⊢ ((𝐵 ∈ 𝒫 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌})) ↔ (𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌}))) |
| 50 | 47, 49 | bitri 264 |
. . . 4
⊢ (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝑏) = {𝑌})} ↔ (𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌}))) |
| 51 | 41, 50 | syl6bb 276 |
. . 3
⊢ (𝑊 ∈ PreHil → (𝐵 ∈ (OBasis‘𝑊) ↔ (𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌})))) |
| 52 | 4, 51 | biadan2 674 |
. 2
⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ (𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌})))) |
| 53 | | 3anass 1042 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌})) ↔ (𝑊 ∈ PreHil ∧ (𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌})))) |
| 54 | 52, 53 | bitr4i 267 |
1
⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ( ⊥
‘𝐵) = {𝑌}))) |