![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > obsip | Structured version Visualization version GIF version |
Description: The inner product of two elements of an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
isobs.v | ⊢ 𝑉 = (Base‘𝑊) |
isobs.h | ⊢ , = (·𝑖‘𝑊) |
isobs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isobs.u | ⊢ 1 = (1r‘𝐹) |
isobs.z | ⊢ 0 = (0g‘𝐹) |
Ref | Expression |
---|---|
obsip | ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isobs.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
2 | isobs.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
3 | isobs.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | isobs.u | . . . . . 6 ⊢ 1 = (1r‘𝐹) | |
5 | isobs.z | . . . . . 6 ⊢ 0 = (0g‘𝐹) | |
6 | eqid 2622 | . . . . . 6 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
7 | eqid 2622 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isobs 20064 | . . . . 5 ⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ((ocv‘𝑊)‘𝐵) = {(0g‘𝑊)}))) |
9 | 8 | simp3bi 1078 | . . . 4 ⊢ (𝐵 ∈ (OBasis‘𝑊) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ((ocv‘𝑊)‘𝐵) = {(0g‘𝑊)})) |
10 | 9 | simpld 475 | . . 3 ⊢ (𝐵 ∈ (OBasis‘𝑊) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )) |
11 | oveq1 6657 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑥 , 𝑦) = (𝑃 , 𝑦)) | |
12 | eqeq1 2626 | . . . . . 6 ⊢ (𝑥 = 𝑃 → (𝑥 = 𝑦 ↔ 𝑃 = 𝑦)) | |
13 | 12 | ifbid 4108 | . . . . 5 ⊢ (𝑥 = 𝑃 → if(𝑥 = 𝑦, 1 , 0 ) = if(𝑃 = 𝑦, 1 , 0 )) |
14 | 11, 13 | eqeq12d 2637 | . . . 4 ⊢ (𝑥 = 𝑃 → ((𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ (𝑃 , 𝑦) = if(𝑃 = 𝑦, 1 , 0 ))) |
15 | oveq2 6658 | . . . . 5 ⊢ (𝑦 = 𝑄 → (𝑃 , 𝑦) = (𝑃 , 𝑄)) | |
16 | eqeq2 2633 | . . . . . 6 ⊢ (𝑦 = 𝑄 → (𝑃 = 𝑦 ↔ 𝑃 = 𝑄)) | |
17 | 16 | ifbid 4108 | . . . . 5 ⊢ (𝑦 = 𝑄 → if(𝑃 = 𝑦, 1 , 0 ) = if(𝑃 = 𝑄, 1 , 0 )) |
18 | 15, 17 | eqeq12d 2637 | . . . 4 ⊢ (𝑦 = 𝑄 → ((𝑃 , 𝑦) = if(𝑃 = 𝑦, 1 , 0 ) ↔ (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 ))) |
19 | 14, 18 | rspc2v 3322 | . . 3 ⊢ ((𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 ))) |
20 | 10, 19 | syl5com 31 | . 2 ⊢ (𝐵 ∈ (OBasis‘𝑊) → ((𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 ))) |
21 | 20 | 3impib 1262 | 1 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 ifcif 4086 {csn 4177 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 Scalarcsca 15944 ·𝑖cip 15946 0gc0g 16100 1rcur 18501 PreHilcphl 19969 ocvcocv 20004 OBasiscobs 20046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-obs 20049 |
This theorem is referenced by: obsipid 20066 obselocv 20072 |
Copyright terms: Public domain | W3C validator |