| Step | Hyp | Ref
| Expression |
| 1 | | df-br 4654 |
. . 3
⊢ (𝐴(⟂G‘𝐺)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (⟂G‘𝐺)) |
| 2 | | df-perpg 25591 |
. . . . . 6
⊢ ⟂G
= (𝑔 ∈ V ↦
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))}) |
| 3 | 2 | a1i 11 |
. . . . 5
⊢ (𝜑 → ⟂G = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))})) |
| 4 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
| 5 | 4 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (LineG‘𝑔) = (LineG‘𝐺)) |
| 6 | | isperp.l |
. . . . . . . . . . 11
⊢ 𝐿 = (LineG‘𝐺) |
| 7 | 5, 6 | syl6eqr 2674 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (LineG‘𝑔) = 𝐿) |
| 8 | 7 | rneqd 5353 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ran (LineG‘𝑔) = ran 𝐿) |
| 9 | 8 | eleq2d 2687 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑎 ∈ ran (LineG‘𝑔) ↔ 𝑎 ∈ ran 𝐿)) |
| 10 | 8 | eleq2d 2687 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑏 ∈ ran (LineG‘𝑔) ↔ 𝑏 ∈ ran 𝐿)) |
| 11 | 9, 10 | anbi12d 747 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ↔ (𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿))) |
| 12 | 4 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∟G‘𝑔) = (∟G‘𝐺)) |
| 13 | 12 | eleq2d 2687 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 14 | 13 | ralbidv 2986 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 15 | 14 | rexralbidv 3058 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 16 | 11, 15 | anbi12d 747 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔)) ↔ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)))) |
| 17 | 16 | opabbidv 4716 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))}) |
| 18 | | isperp.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 19 | | elex 3212 |
. . . . . 6
⊢ (𝐺 ∈ TarskiG → 𝐺 ∈ V) |
| 20 | 18, 19 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ V) |
| 21 | | fvex 6201 |
. . . . . . . . 9
⊢
(LineG‘𝐺)
∈ V |
| 22 | 6, 21 | eqeltri 2697 |
. . . . . . . 8
⊢ 𝐿 ∈ V |
| 23 | | rnexg 7098 |
. . . . . . . 8
⊢ (𝐿 ∈ V → ran 𝐿 ∈ V) |
| 24 | 22, 23 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → ran 𝐿 ∈ V) |
| 25 | | xpexg 6960 |
. . . . . . 7
⊢ ((ran
𝐿 ∈ V ∧ ran 𝐿 ∈ V) → (ran 𝐿 × ran 𝐿) ∈ V) |
| 26 | 24, 24, 25 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (ran 𝐿 × ran 𝐿) ∈ V) |
| 27 | | opabssxp 5193 |
. . . . . . 7
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿) |
| 28 | 27 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿)) |
| 29 | 26, 28 | ssexd 4805 |
. . . . 5
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ∈ V) |
| 30 | 3, 17, 20, 29 | fvmptd 6288 |
. . . 4
⊢ (𝜑 → (⟂G‘𝐺) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))}) |
| 31 | 30 | eleq2d 2687 |
. . 3
⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ (⟂G‘𝐺) ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))})) |
| 32 | 1, 31 | syl5bb 272 |
. 2
⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))})) |
| 33 | | isperp.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| 34 | | isperp.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |
| 35 | | ineq12 3809 |
. . . . 5
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎 ∩ 𝑏) = (𝐴 ∩ 𝐵)) |
| 36 | | simpll 790 |
. . . . . 6
⊢ (((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎 ∩ 𝑏)) → 𝑎 = 𝐴) |
| 37 | | simpllr 799 |
. . . . . . 7
⊢ ((((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎 ∩ 𝑏)) ∧ 𝑢 ∈ 𝑎) → 𝑏 = 𝐵) |
| 38 | 37 | raleqdv 3144 |
. . . . . 6
⊢ ((((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎 ∩ 𝑏)) ∧ 𝑢 ∈ 𝑎) → (∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 39 | 36, 38 | raleqbidva 3154 |
. . . . 5
⊢ (((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎 ∩ 𝑏)) → (∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 40 | 35, 39 | rexeqbidva 3155 |
. . . 4
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 41 | 40 | opelopab2a 4990 |
. . 3
⊢ ((𝐴 ∈ ran 𝐿 ∧ 𝐵 ∈ ran 𝐿) → (〈𝐴, 𝐵〉 ∈ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 42 | 33, 34, 41 | syl2anc 693 |
. 2
⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 43 | 32, 42 | bitrd 268 |
1
⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |