MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperp Structured version   Visualization version   GIF version

Theorem isperp 25607
Description: Property for 2 lines A, B to be perpendicular. Item (ii) of definition 8.11 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp.b (𝜑𝐵 ∈ ran 𝐿)
Assertion
Ref Expression
isperp (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
Distinct variable groups:   𝑣,𝑢,𝑥,𝐴   𝑢,𝐵,𝑣,𝑥   𝑢,𝐺,𝑣,𝑥   𝜑,𝑢,𝑣,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑣,𝑢)   𝐼(𝑥,𝑣,𝑢)   𝐿(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢)

Proof of Theorem isperp
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4654 . . 3 (𝐴(⟂G‘𝐺)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (⟂G‘𝐺))
2 df-perpg 25591 . . . . . 6 ⟂G = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔))})
32a1i 11 . . . . 5 (𝜑 → ⟂G = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔))}))
4 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
54fveq2d 6195 . . . . . . . . . . 11 ((𝜑𝑔 = 𝐺) → (LineG‘𝑔) = (LineG‘𝐺))
6 isperp.l . . . . . . . . . . 11 𝐿 = (LineG‘𝐺)
75, 6syl6eqr 2674 . . . . . . . . . 10 ((𝜑𝑔 = 𝐺) → (LineG‘𝑔) = 𝐿)
87rneqd 5353 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → ran (LineG‘𝑔) = ran 𝐿)
98eleq2d 2687 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (𝑎 ∈ ran (LineG‘𝑔) ↔ 𝑎 ∈ ran 𝐿))
108eleq2d 2687 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (𝑏 ∈ ran (LineG‘𝑔) ↔ 𝑏 ∈ ran 𝐿))
119, 10anbi12d 747 . . . . . . 7 ((𝜑𝑔 = 𝐺) → ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ↔ (𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿)))
124fveq2d 6195 . . . . . . . . . 10 ((𝜑𝑔 = 𝐺) → (∟G‘𝑔) = (∟G‘𝐺))
1312eleq2d 2687 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → (⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔) ↔ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
1413ralbidv 2986 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (∀𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔) ↔ ∀𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
1514rexralbidv 3058 . . . . . . 7 ((𝜑𝑔 = 𝐺) → (∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔) ↔ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
1611, 15anbi12d 747 . . . . . 6 ((𝜑𝑔 = 𝐺) → (((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔)) ↔ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))))
1716opabbidv 4716 . . . . 5 ((𝜑𝑔 = 𝐺) → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))})
18 isperp.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
19 elex 3212 . . . . . 6 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
2018, 19syl 17 . . . . 5 (𝜑𝐺 ∈ V)
21 fvex 6201 . . . . . . . . 9 (LineG‘𝐺) ∈ V
226, 21eqeltri 2697 . . . . . . . 8 𝐿 ∈ V
23 rnexg 7098 . . . . . . . 8 (𝐿 ∈ V → ran 𝐿 ∈ V)
2422, 23mp1i 13 . . . . . . 7 (𝜑 → ran 𝐿 ∈ V)
25 xpexg 6960 . . . . . . 7 ((ran 𝐿 ∈ V ∧ ran 𝐿 ∈ V) → (ran 𝐿 × ran 𝐿) ∈ V)
2624, 24, 25syl2anc 693 . . . . . 6 (𝜑 → (ran 𝐿 × ran 𝐿) ∈ V)
27 opabssxp 5193 . . . . . . 7 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿)
2827a1i 11 . . . . . 6 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿))
2926, 28ssexd 4805 . . . . 5 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ∈ V)
303, 17, 20, 29fvmptd 6288 . . . 4 (𝜑 → (⟂G‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))})
3130eleq2d 2687 . . 3 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ (⟂G‘𝐺) ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))}))
321, 31syl5bb 272 . 2 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))}))
33 isperp.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
34 isperp.b . . 3 (𝜑𝐵 ∈ ran 𝐿)
35 ineq12 3809 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝑏) = (𝐴𝐵))
36 simpll 790 . . . . . 6 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎𝑏)) → 𝑎 = 𝐴)
37 simpllr 799 . . . . . . 7 ((((𝑎 = 𝐴𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ 𝑢𝑎) → 𝑏 = 𝐵)
3837raleqdv 3144 . . . . . 6 ((((𝑎 = 𝐴𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ 𝑢𝑎) → (∀𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
3936, 38raleqbidva 3154 . . . . 5 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎𝑏)) → (∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
4035, 39rexeqbidva 3155 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
4140opelopab2a 4990 . . 3 ((𝐴 ∈ ran 𝐿𝐵 ∈ ran 𝐿) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
4233, 34, 41syl2anc 693 . 2 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
4332, 42bitrd 268 1 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574  cop 4183   class class class wbr 4653  {copab 4712  cmpt 4729   × cxp 5112  ran crn 5115  cfv 5888  ⟨“cs3 13587  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  ∟Gcrag 25588  ⟂Gcperpg 25590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-perpg 25591
This theorem is referenced by:  perpcom  25608  perpneq  25609  isperp2  25610
  Copyright terms: Public domain W3C validator