MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperp Structured version   Visualization version   Unicode version

Theorem isperp 25607
Description: Property for 2 lines A, B to be perpendicular. Item (ii) of definition 8.11 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
Hypotheses
Ref Expression
isperp.p  |-  P  =  ( Base `  G
)
isperp.d  |-  .-  =  ( dist `  G )
isperp.i  |-  I  =  (Itv `  G )
isperp.l  |-  L  =  (LineG `  G )
isperp.g  |-  ( ph  ->  G  e. TarskiG )
isperp.a  |-  ( ph  ->  A  e.  ran  L
)
isperp.b  |-  ( ph  ->  B  e.  ran  L
)
Assertion
Ref Expression
isperp  |-  ( ph  ->  ( A (⟂G `  G
) B  <->  E. x  e.  ( A  i^i  B
) A. u  e.  A  A. v  e.  B  <" u x v ">  e.  (∟G `  G ) ) )
Distinct variable groups:    v, u, x, A    u, B, v, x    u, G, v, x    ph, u, v, x
Allowed substitution hints:    P( x, v, u)    I( x, v, u)    L( x, v, u)    .- ( x, v, u)

Proof of Theorem isperp
Dummy variables  a 
b  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4654 . . 3  |-  ( A (⟂G `  G ) B 
<-> 
<. A ,  B >.  e.  (⟂G `  G )
)
2 df-perpg 25591 . . . . . 6  |- ⟂G  =  ( g  e.  _V  |->  {
<. a ,  b >.  |  ( ( a  e.  ran  (LineG `  g )  /\  b  e.  ran  (LineG `  g
) )  /\  E. x  e.  ( a  i^i  b ) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  g )
) } )
32a1i 11 . . . . 5  |-  ( ph  -> ⟂G  =  ( g  e. 
_V  |->  { <. a ,  b >.  |  ( ( a  e.  ran  (LineG `  g )  /\  b  e.  ran  (LineG `  g ) )  /\  E. x  e.  ( a  i^i  b ) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  g
) ) } ) )
4 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  g  =  G )  ->  g  =  G )
54fveq2d 6195 . . . . . . . . . . 11  |-  ( (
ph  /\  g  =  G )  ->  (LineG `  g )  =  (LineG `  G ) )
6 isperp.l . . . . . . . . . . 11  |-  L  =  (LineG `  G )
75, 6syl6eqr 2674 . . . . . . . . . 10  |-  ( (
ph  /\  g  =  G )  ->  (LineG `  g )  =  L )
87rneqd 5353 . . . . . . . . 9  |-  ( (
ph  /\  g  =  G )  ->  ran  (LineG `  g )  =  ran  L )
98eleq2d 2687 . . . . . . . 8  |-  ( (
ph  /\  g  =  G )  ->  (
a  e.  ran  (LineG `  g )  <->  a  e.  ran  L ) )
108eleq2d 2687 . . . . . . . 8  |-  ( (
ph  /\  g  =  G )  ->  (
b  e.  ran  (LineG `  g )  <->  b  e.  ran  L ) )
119, 10anbi12d 747 . . . . . . 7  |-  ( (
ph  /\  g  =  G )  ->  (
( a  e.  ran  (LineG `  g )  /\  b  e.  ran  (LineG `  g ) )  <->  ( a  e.  ran  L  /\  b  e.  ran  L ) ) )
124fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  g  =  G )  ->  (∟G `  g )  =  (∟G `  G ) )
1312eleq2d 2687 . . . . . . . . 9  |-  ( (
ph  /\  g  =  G )  ->  ( <" u x v ">  e.  (∟G `  g )  <->  <" u x v ">  e.  (∟G `  G )
) )
1413ralbidv 2986 . . . . . . . 8  |-  ( (
ph  /\  g  =  G )  ->  ( A. v  e.  b  <" u x v ">  e.  (∟G `  g )  <->  A. v  e.  b  <" u x v ">  e.  (∟G `  G )
) )
1514rexralbidv 3058 . . . . . . 7  |-  ( (
ph  /\  g  =  G )  ->  ( E. x  e.  (
a  i^i  b ) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  g )  <->  E. x  e.  ( a  i^i  b
) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  G ) ) )
1611, 15anbi12d 747 . . . . . 6  |-  ( (
ph  /\  g  =  G )  ->  (
( ( a  e. 
ran  (LineG `  g )  /\  b  e.  ran  (LineG `  g ) )  /\  E. x  e.  ( a  i^i  b
) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  g ) )  <-> 
( ( a  e. 
ran  L  /\  b  e.  ran  L )  /\  E. x  e.  ( a  i^i  b ) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  G
) ) ) )
1716opabbidv 4716 . . . . 5  |-  ( (
ph  /\  g  =  G )  ->  { <. a ,  b >.  |  ( ( a  e.  ran  (LineG `  g )  /\  b  e.  ran  (LineG `  g ) )  /\  E. x  e.  ( a  i^i  b ) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  g
) ) }  =  { <. a ,  b
>.  |  ( (
a  e.  ran  L  /\  b  e.  ran  L )  /\  E. x  e.  ( a  i^i  b
) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  G ) ) } )
18 isperp.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
19 elex 3212 . . . . . 6  |-  ( G  e. TarskiG  ->  G  e.  _V )
2018, 19syl 17 . . . . 5  |-  ( ph  ->  G  e.  _V )
21 fvex 6201 . . . . . . . . 9  |-  (LineG `  G )  e.  _V
226, 21eqeltri 2697 . . . . . . . 8  |-  L  e. 
_V
23 rnexg 7098 . . . . . . . 8  |-  ( L  e.  _V  ->  ran  L  e.  _V )
2422, 23mp1i 13 . . . . . . 7  |-  ( ph  ->  ran  L  e.  _V )
25 xpexg 6960 . . . . . . 7  |-  ( ( ran  L  e.  _V  /\ 
ran  L  e.  _V )  ->  ( ran  L  X.  ran  L )  e. 
_V )
2624, 24, 25syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ran  L  X.  ran  L )  e.  _V )
27 opabssxp 5193 . . . . . . 7  |-  { <. a ,  b >.  |  ( ( a  e.  ran  L  /\  b  e.  ran  L )  /\  E. x  e.  ( a  i^i  b
) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  G ) ) }  C_  ( ran  L  X.  ran  L )
2827a1i 11 . . . . . 6  |-  ( ph  ->  { <. a ,  b
>.  |  ( (
a  e.  ran  L  /\  b  e.  ran  L )  /\  E. x  e.  ( a  i^i  b
) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  G ) ) }  C_  ( ran  L  X.  ran  L ) )
2926, 28ssexd 4805 . . . . 5  |-  ( ph  ->  { <. a ,  b
>.  |  ( (
a  e.  ran  L  /\  b  e.  ran  L )  /\  E. x  e.  ( a  i^i  b
) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  G ) ) }  e.  _V )
303, 17, 20, 29fvmptd 6288 . . . 4  |-  ( ph  ->  (⟂G `  G )  =  { <. a ,  b
>.  |  ( (
a  e.  ran  L  /\  b  e.  ran  L )  /\  E. x  e.  ( a  i^i  b
) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  G ) ) } )
3130eleq2d 2687 . . 3  |-  ( ph  ->  ( <. A ,  B >.  e.  (⟂G `  G )  <->  <. A ,  B >.  e. 
{ <. a ,  b
>.  |  ( (
a  e.  ran  L  /\  b  e.  ran  L )  /\  E. x  e.  ( a  i^i  b
) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  G ) ) } ) )
321, 31syl5bb 272 . 2  |-  ( ph  ->  ( A (⟂G `  G
) B  <->  <. A ,  B >.  e.  { <. a ,  b >.  |  ( ( a  e.  ran  L  /\  b  e.  ran  L )  /\  E. x  e.  ( a  i^i  b
) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  G ) ) } ) )
33 isperp.a . . 3  |-  ( ph  ->  A  e.  ran  L
)
34 isperp.b . . 3  |-  ( ph  ->  B  e.  ran  L
)
35 ineq12 3809 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  ( a  i^i  b
)  =  ( A  i^i  B ) )
36 simpll 790 . . . . . 6  |-  ( ( ( a  =  A  /\  b  =  B )  /\  x  e.  ( a  i^i  b
) )  ->  a  =  A )
37 simpllr 799 . . . . . . 7  |-  ( ( ( ( a  =  A  /\  b  =  B )  /\  x  e.  ( a  i^i  b
) )  /\  u  e.  a )  ->  b  =  B )
3837raleqdv 3144 . . . . . 6  |-  ( ( ( ( a  =  A  /\  b  =  B )  /\  x  e.  ( a  i^i  b
) )  /\  u  e.  a )  ->  ( A. v  e.  b  <" u x v ">  e.  (∟G `  G )  <->  A. v  e.  B  <" u x v ">  e.  (∟G `  G )
) )
3936, 38raleqbidva 3154 . . . . 5  |-  ( ( ( a  =  A  /\  b  =  B )  /\  x  e.  ( a  i^i  b
) )  ->  ( A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  G )  <->  A. u  e.  A  A. v  e.  B  <" u x v ">  e.  (∟G `  G )
) )
4035, 39rexeqbidva 3155 . . . 4  |-  ( ( a  =  A  /\  b  =  B )  ->  ( E. x  e.  ( a  i^i  b
) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  G )  <->  E. x  e.  ( A  i^i  B
) A. u  e.  A  A. v  e.  B  <" u x v ">  e.  (∟G `  G ) ) )
4140opelopab2a 4990 . . 3  |-  ( ( A  e.  ran  L  /\  B  e.  ran  L )  ->  ( <. A ,  B >.  e.  { <. a ,  b >.  |  ( ( a  e.  ran  L  /\  b  e.  ran  L )  /\  E. x  e.  ( a  i^i  b
) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  G ) ) }  <->  E. x  e.  ( A  i^i  B ) A. u  e.  A  A. v  e.  B  <" u x v ">  e.  (∟G `  G ) ) )
4233, 34, 41syl2anc 693 . 2  |-  ( ph  ->  ( <. A ,  B >.  e.  { <. a ,  b >.  |  ( ( a  e.  ran  L  /\  b  e.  ran  L )  /\  E. x  e.  ( a  i^i  b
) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  G ) ) }  <->  E. x  e.  ( A  i^i  B ) A. u  e.  A  A. v  e.  B  <" u x v ">  e.  (∟G `  G ) ) )
4332, 42bitrd 268 1  |-  ( ph  ->  ( A (⟂G `  G
) B  <->  E. x  e.  ( A  i^i  B
) A. u  e.  A  A. v  e.  B  <" u x v ">  e.  (∟G `  G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   <.cop 4183   class class class wbr 4653   {copab 4712    |-> cmpt 4729    X. cxp 5112   ran crn 5115   ` cfv 5888   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  ∟Gcrag 25588  ⟂Gcperpg 25590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-perpg 25591
This theorem is referenced by:  perpcom  25608  perpneq  25609  isperp2  25610
  Copyright terms: Public domain W3C validator