MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispgp Structured version   Visualization version   GIF version

Theorem ispgp 18007
Description: A group is a 𝑃-group if every element has some power of 𝑃 as its order. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
ispgp.1 𝑋 = (Base‘𝐺)
ispgp.2 𝑂 = (od‘𝐺)
Assertion
Ref Expression
ispgp (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
Distinct variable groups:   𝑥,𝑛,𝐺   𝑃,𝑛,𝑥   𝑥,𝑋
Allowed substitution hints:   𝑂(𝑥,𝑛)   𝑋(𝑛)

Proof of Theorem ispgp
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑔 = 𝐺)
21fveq2d 6195 . . . . 5 ((𝑝 = 𝑃𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺))
3 ispgp.1 . . . . 5 𝑋 = (Base‘𝐺)
42, 3syl6eqr 2674 . . . 4 ((𝑝 = 𝑃𝑔 = 𝐺) → (Base‘𝑔) = 𝑋)
51fveq2d 6195 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (od‘𝑔) = (od‘𝐺))
6 ispgp.2 . . . . . . . 8 𝑂 = (od‘𝐺)
75, 6syl6eqr 2674 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → (od‘𝑔) = 𝑂)
87fveq1d 6193 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → ((od‘𝑔)‘𝑥) = (𝑂𝑥))
9 simpl 473 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑝 = 𝑃)
109oveq1d 6665 . . . . . 6 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑝𝑛) = (𝑃𝑛))
118, 10eqeq12d 2637 . . . . 5 ((𝑝 = 𝑃𝑔 = 𝐺) → (((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ (𝑂𝑥) = (𝑃𝑛)))
1211rexbidv 3052 . . . 4 ((𝑝 = 𝑃𝑔 = 𝐺) → (∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
134, 12raleqbidv 3152 . . 3 ((𝑝 = 𝑃𝑔 = 𝐺) → (∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛) ↔ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
14 df-pgp 17950 . . 3 pGrp = {⟨𝑝, 𝑔⟩ ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛))}
1513, 14brab2a 5194 . 2 (𝑃 pGrp 𝐺 ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
16 df-3an 1039 . 2 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)) ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
1715, 16bitr4i 267 1 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 (𝑂𝑥) = (𝑃𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  0cn0 11292  cexp 12860  cprime 15385  Basecbs 15857  Grpcgrp 17422  odcod 17944   pGrp cpgp 17946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-iota 5851  df-fv 5896  df-ov 6653  df-pgp 17950
This theorem is referenced by:  pgpprm  18008  pgpgrp  18009  pgpfi1  18010  subgpgp  18012  pgpfi  18020
  Copyright terms: Public domain W3C validator