![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ispgp | Structured version Visualization version GIF version |
Description: A group is a 𝑃-group if every element has some power of 𝑃 as its order. (Contributed by Mario Carneiro, 15-Jan-2015.) |
Ref | Expression |
---|---|
ispgp.1 | ⊢ 𝑋 = (Base‘𝐺) |
ispgp.2 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
ispgp | ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) | |
2 | 1 | fveq2d 6195 | . . . . 5 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺)) |
3 | ispgp.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
4 | 2, 3 | syl6eqr 2674 | . . . 4 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (Base‘𝑔) = 𝑋) |
5 | 1 | fveq2d 6195 | . . . . . . . 8 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (od‘𝑔) = (od‘𝐺)) |
6 | ispgp.2 | . . . . . . . 8 ⊢ 𝑂 = (od‘𝐺) | |
7 | 5, 6 | syl6eqr 2674 | . . . . . . 7 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (od‘𝑔) = 𝑂) |
8 | 7 | fveq1d 6193 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → ((od‘𝑔)‘𝑥) = (𝑂‘𝑥)) |
9 | simpl 473 | . . . . . . 7 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → 𝑝 = 𝑃) | |
10 | 9 | oveq1d 6665 | . . . . . 6 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (𝑝↑𝑛) = (𝑃↑𝑛)) |
11 | 8, 10 | eqeq12d 2637 | . . . . 5 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ (𝑂‘𝑥) = (𝑃↑𝑛))) |
12 | 11 | rexbidv 3052 | . . . 4 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
13 | 4, 12 | raleqbidv 3152 | . . 3 ⊢ ((𝑝 = 𝑃 ∧ 𝑔 = 𝐺) → (∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛) ↔ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
14 | df-pgp 17950 | . . 3 ⊢ pGrp = {〈𝑝, 𝑔〉 ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛))} | |
15 | 13, 14 | brab2a 5194 | . 2 ⊢ (𝑃 pGrp 𝐺 ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
16 | df-3an 1039 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛)) ↔ ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) | |
17 | 15, 16 | bitr4i 267 | 1 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ ℕ0 (𝑂‘𝑥) = (𝑃↑𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℕ0cn0 11292 ↑cexp 12860 ℙcprime 15385 Basecbs 15857 Grpcgrp 17422 odcod 17944 pGrp cpgp 17946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-iota 5851 df-fv 5896 df-ov 6653 df-pgp 17950 |
This theorem is referenced by: pgpprm 18008 pgpgrp 18009 pgpfi1 18010 subgpgp 18012 pgpfi 18020 |
Copyright terms: Public domain | W3C validator |