MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispod Structured version   Visualization version   GIF version

Theorem ispod 5043
Description: Sufficient conditions for a partial order. (Contributed by NM, 9-Jul-2014.)
Hypotheses
Ref Expression
ispod.1 ((𝜑𝑥𝐴) → ¬ 𝑥𝑅𝑥)
ispod.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Assertion
Ref Expression
ispod (𝜑𝑅 Po 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem ispod
StepHypRef Expression
1 ispod.1 . . . . 5 ((𝜑𝑥𝐴) → ¬ 𝑥𝑅𝑥)
213ad2antr1 1226 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ 𝑥𝑅𝑥)
3 ispod.2 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
42, 3jca 554 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
54ralrimivvva 2972 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
6 df-po 5035 . 2 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
75, 6sylibr 224 1 (𝜑𝑅 Po 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037  wcel 1990  wral 2912   class class class wbr 4653   Po wpo 5033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039  df-ral 2917  df-po 5035
This theorem is referenced by:  swopo  5045  pofun  5051  issoi  5066  wemappo  8454  pospo  16973  legso  25494  pocnv  31653
  Copyright terms: Public domain W3C validator