MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemappo Structured version   Visualization version   GIF version

Theorem wemappo 8454
Description: Construct lexicographic order on a function space based on a well-ordering of the indexes and a total ordering of the values.

Without totality on the values or least differing indexes, the best we can prove here is a partial order. (Contributed by Stefan O'Rear, 18-Jan-2015.)

Hypothesis
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
wemappo ((𝐴𝑉𝑅 Or 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐵𝑚 𝐴))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemappo
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐴𝑉𝐴 ∈ V)
2 simpll3 1102 . . . . . . 7 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) ∧ 𝑏𝐴) → 𝑆 Po 𝐵)
3 elmapi 7879 . . . . . . . . 9 (𝑎 ∈ (𝐵𝑚 𝐴) → 𝑎:𝐴𝐵)
43adantl 482 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) → 𝑎:𝐴𝐵)
54ffvelrnda 6359 . . . . . . 7 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) ∧ 𝑏𝐴) → (𝑎𝑏) ∈ 𝐵)
6 poirr 5046 . . . . . . 7 ((𝑆 Po 𝐵 ∧ (𝑎𝑏) ∈ 𝐵) → ¬ (𝑎𝑏)𝑆(𝑎𝑏))
72, 5, 6syl2anc 693 . . . . . 6 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) ∧ 𝑏𝐴) → ¬ (𝑎𝑏)𝑆(𝑎𝑏))
87intnanrd 963 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) ∧ 𝑏𝐴) → ¬ ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐))))
98nrexdv 3001 . . . 4 (((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) → ¬ ∃𝑏𝐴 ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐))))
10 vex 3203 . . . . 5 𝑎 ∈ V
11 wemapso.t . . . . . 6 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
1211wemaplem1 8451 . . . . 5 ((𝑎 ∈ V ∧ 𝑎 ∈ V) → (𝑎𝑇𝑎 ↔ ∃𝑏𝐴 ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐)))))
1310, 10, 12mp2an 708 . . . 4 (𝑎𝑇𝑎 ↔ ∃𝑏𝐴 ((𝑎𝑏)𝑆(𝑎𝑏) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑎𝑐) = (𝑎𝑐))))
149, 13sylnibr 319 . . 3 (((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ 𝑎 ∈ (𝐵𝑚 𝐴)) → ¬ 𝑎𝑇𝑎)
15 simpll1 1100 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝐴 ∈ V)
16 simplr1 1103 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑎 ∈ (𝐵𝑚 𝐴))
17 simplr2 1104 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑏 ∈ (𝐵𝑚 𝐴))
18 simplr3 1105 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑐 ∈ (𝐵𝑚 𝐴))
19 simpll2 1101 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑅 Or 𝐴)
20 simpll3 1102 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑆 Po 𝐵)
21 simprl 794 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑎𝑇𝑏)
22 simprr 796 . . . . 5 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑏𝑇𝑐)
2311, 15, 16, 17, 18, 19, 20, 21, 22wemaplem3 8453 . . . 4 ((((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) ∧ (𝑎𝑇𝑏𝑏𝑇𝑐)) → 𝑎𝑇𝑐)
2423ex 450 . . 3 (((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴) ∧ 𝑐 ∈ (𝐵𝑚 𝐴))) → ((𝑎𝑇𝑏𝑏𝑇𝑐) → 𝑎𝑇𝑐))
2514, 24ispod 5043 . 2 ((𝐴 ∈ V ∧ 𝑅 Or 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐵𝑚 𝐴))
261, 25syl3an1 1359 1 ((𝐴𝑉𝑅 Or 𝐴𝑆 Po 𝐵) → 𝑇 Po (𝐵𝑚 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200   class class class wbr 4653  {copab 4712   Po wpo 5033   Or wor 5034  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  wemapsolem  8455
  Copyright terms: Public domain W3C validator