MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isposi Structured version   Visualization version   GIF version

Theorem isposi 16956
Description: Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
isposi.k 𝐾 ∈ V
isposi.b 𝐵 = (Base‘𝐾)
isposi.l = (le‘𝐾)
isposi.1 (𝑥𝐵𝑥 𝑥)
isposi.2 ((𝑥𝐵𝑦𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
isposi.3 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
Assertion
Ref Expression
isposi 𝐾 ∈ Poset
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐾(𝑥,𝑦,𝑧)

Proof of Theorem isposi
StepHypRef Expression
1 isposi.k . 2 𝐾 ∈ V
2 isposi.1 . . . . 5 (𝑥𝐵𝑥 𝑥)
323ad2ant1 1082 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → 𝑥 𝑥)
4 isposi.2 . . . . 5 ((𝑥𝐵𝑦𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
543adant3 1081 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
6 isposi.3 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
73, 5, 63jca 1242 . . 3 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
87rgen3 2976 . 2 𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
9 isposi.b . . 3 𝐵 = (Base‘𝐾)
10 isposi.l . . 3 = (le‘𝐾)
119, 10ispos 16947 . 2 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
121, 8, 11mpbir2an 955 1 𝐾 ∈ Poset
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200   class class class wbr 4653  cfv 5888  Basecbs 15857  lecple 15948  Posetcpo 16940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-poset 16946
This theorem is referenced by:  isposix  16957  xrstos  29679  xrge0omnd  29711
  Copyright terms: Public domain W3C validator