Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0omnd Structured version   Visualization version   GIF version

Theorem xrge0omnd 29711
Description: The nonnegative extended real numbers form an ordered monoid. (Contributed by Thierry Arnoux, 22-Mar-2018.)
Assertion
Ref Expression
xrge0omnd (ℝ*𝑠s (0[,]+∞)) ∈ oMnd

Proof of Theorem xrge0omnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0cmn 19788 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
2 cmnmnd 18208 . . 3 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
31, 2ax-mp 5 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
4 ovex 6678 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ V
5 xrge0base 29685 . . . 4 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
6 xrge0le 29688 . . . 4 ≤ = (le‘(ℝ*𝑠s (0[,]+∞)))
7 iccssxr 12256 . . . . . 6 (0[,]+∞) ⊆ ℝ*
87sseli 3599 . . . . 5 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ ℝ*)
9 xrleid 11983 . . . . 5 (𝑥 ∈ ℝ*𝑥𝑥)
108, 9syl 17 . . . 4 (𝑥 ∈ (0[,]+∞) → 𝑥𝑥)
117sseli 3599 . . . . 5 (𝑦 ∈ (0[,]+∞) → 𝑦 ∈ ℝ*)
12 xrletri3 11985 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 = 𝑦 ↔ (𝑥𝑦𝑦𝑥)))
1312biimprd 238 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝑦𝑦𝑥) → 𝑥 = 𝑦))
148, 11, 13syl2an 494 . . . 4 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥𝑦𝑦𝑥) → 𝑥 = 𝑦))
157sseli 3599 . . . . 5 (𝑧 ∈ (0[,]+∞) → 𝑧 ∈ ℝ*)
16 xrletr 11989 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
178, 11, 15, 16syl3an 1368 . . . 4 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
184, 5, 6, 10, 14, 17isposi 16956 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ Poset
19 xrletri 11984 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑦𝑥))
208, 11, 19syl2an 494 . . . 4 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥𝑦𝑦𝑥))
2120rgen2a 2977 . . 3 𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦𝑦𝑥)
225, 6istos 17035 . . 3 ((ℝ*𝑠s (0[,]+∞)) ∈ Toset ↔ ((ℝ*𝑠s (0[,]+∞)) ∈ Poset ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦𝑦𝑥)))
2318, 21, 22mpbir2an 955 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Toset
24 xleadd1a 12083 . . . . 5 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))
2524ex 450 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑥𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)))
268, 11, 15, 25syl3an 1368 . . 3 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝑧 ∈ (0[,]+∞)) → (𝑥𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧)))
2726rgen3 2976 . 2 𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)∀𝑧 ∈ (0[,]+∞)(𝑥𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))
28 xrge0plusg 29687 . . 3 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
295, 28, 6isomnd 29701 . 2 ((ℝ*𝑠s (0[,]+∞)) ∈ oMnd ↔ ((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Toset ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)∀𝑧 ∈ (0[,]+∞)(𝑥𝑦 → (𝑥 +𝑒 𝑧) ≤ (𝑦 +𝑒 𝑧))))
303, 23, 27, 29mpbir3an 1244 1 (ℝ*𝑠s (0[,]+∞)) ∈ oMnd
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  (class class class)co 6650  0cc0 9936  +∞cpnf 10071  *cxr 10073  cle 10075   +𝑒 cxad 11944  [,]cicc 12178  s cress 15858  *𝑠cxrs 16160  Posetcpo 16940  Tosetctos 17033  Mndcmnd 17294  CMndccmn 18193  oMndcomnd 29697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-xadd 11947  df-icc 12182  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-xrs 16162  df-poset 16946  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-cmn 18195  df-omnd 29699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator