Proof of Theorem isposd
| Step | Hyp | Ref
| Expression |
| 1 | | isposd.k |
. . 3
⊢ (𝜑 → 𝐾 ∈ V) |
| 2 | | isposd.1 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ≤ 𝑥) |
| 3 | 2 | adantrr 753 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ≤ 𝑥) |
| 4 | 3 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝑥 ≤ 𝑥) |
| 5 | | isposd.2 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
| 6 | 5 | 3expb 1266 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
| 7 | 6 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) |
| 8 | | isposd.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
| 9 | 8 | 3exp2 1285 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑦 ∈ 𝐵 → (𝑧 ∈ 𝐵 → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))))) |
| 10 | 9 | imp42 620 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
| 11 | 4, 7, 10 | 3jca 1242 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 12 | 11 | ralrimiva 2966 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 13 | 12 | ralrimivva 2971 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 14 | | isposd.b |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| 15 | | isposd.l |
. . . . . . . . 9
⊢ (𝜑 → ≤ = (le‘𝐾)) |
| 16 | 15 | breqd 4664 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ≤ 𝑥 ↔ 𝑥(le‘𝐾)𝑥)) |
| 17 | 15 | breqd 4664 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ≤ 𝑦 ↔ 𝑥(le‘𝐾)𝑦)) |
| 18 | 15 | breqd 4664 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ≤ 𝑥 ↔ 𝑦(le‘𝐾)𝑥)) |
| 19 | 17, 18 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) ↔ (𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥))) |
| 20 | 19 | imbi1d 331 |
. . . . . . . 8
⊢ (𝜑 → (((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ↔ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦))) |
| 21 | 15 | breqd 4664 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ≤ 𝑧 ↔ 𝑦(le‘𝐾)𝑧)) |
| 22 | 17, 21 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) ↔ (𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧))) |
| 23 | 15 | breqd 4664 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ≤ 𝑧 ↔ 𝑥(le‘𝐾)𝑧)) |
| 24 | 22, 23 | imbi12d 334 |
. . . . . . . 8
⊢ (𝜑 → (((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧) ↔ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))) |
| 25 | 16, 20, 24 | 3anbi123d 1399 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ↔ (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))) |
| 26 | 14, 25 | raleqbidv 3152 |
. . . . . 6
⊢ (𝜑 → (∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ↔ ∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))) |
| 27 | 14, 26 | raleqbidv 3152 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ↔ ∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))) |
| 28 | 14, 27 | raleqbidv 3152 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))) |
| 29 | 28 | anbi2d 740 |
. . 3
⊢ (𝜑 → ((𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))) ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))) |
| 30 | 1, 13, 29 | mpbi2and 956 |
. 2
⊢ (𝜑 → (𝐾 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))) |
| 31 | | eqid 2622 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 32 | | eqid 2622 |
. . 3
⊢
(le‘𝐾) =
(le‘𝐾) |
| 33 | 31, 32 | ispos 16947 |
. 2
⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦 ∧ 𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))) |
| 34 | 30, 33 | sylibr 224 |
1
⊢ (𝜑 → 𝐾 ∈ Poset) |