Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issdrg Structured version   Visualization version   GIF version

Theorem issdrg 37767
Description: Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015.)
Assertion
Ref Expression
issdrg (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing))

Proof of Theorem issdrg
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sdrg 37766 . . . . 5 SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤s 𝑠) ∈ DivRing})
21dmmptss 5631 . . . 4 dom SubDRing ⊆ DivRing
3 elfvdm 6220 . . . 4 (𝑆 ∈ (SubDRing‘𝑅) → 𝑅 ∈ dom SubDRing)
42, 3sseldi 3601 . . 3 (𝑆 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing)
5 fveq2 6191 . . . . . . 7 (𝑤 = 𝑅 → (SubRing‘𝑤) = (SubRing‘𝑅))
6 oveq1 6657 . . . . . . . 8 (𝑤 = 𝑅 → (𝑤s 𝑠) = (𝑅s 𝑠))
76eleq1d 2686 . . . . . . 7 (𝑤 = 𝑅 → ((𝑤s 𝑠) ∈ DivRing ↔ (𝑅s 𝑠) ∈ DivRing))
85, 7rabeqbidv 3195 . . . . . 6 (𝑤 = 𝑅 → {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤s 𝑠) ∈ DivRing} = {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅s 𝑠) ∈ DivRing})
9 fvex 6201 . . . . . . 7 (SubRing‘𝑅) ∈ V
109rabex 4813 . . . . . 6 {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅s 𝑠) ∈ DivRing} ∈ V
118, 1, 10fvmpt 6282 . . . . 5 (𝑅 ∈ DivRing → (SubDRing‘𝑅) = {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅s 𝑠) ∈ DivRing})
1211eleq2d 2687 . . . 4 (𝑅 ∈ DivRing → (𝑆 ∈ (SubDRing‘𝑅) ↔ 𝑆 ∈ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅s 𝑠) ∈ DivRing}))
13 oveq2 6658 . . . . . 6 (𝑠 = 𝑆 → (𝑅s 𝑠) = (𝑅s 𝑆))
1413eleq1d 2686 . . . . 5 (𝑠 = 𝑆 → ((𝑅s 𝑠) ∈ DivRing ↔ (𝑅s 𝑆) ∈ DivRing))
1514elrab 3363 . . . 4 (𝑆 ∈ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅s 𝑠) ∈ DivRing} ↔ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing))
1612, 15syl6bb 276 . . 3 (𝑅 ∈ DivRing → (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing)))
174, 16biadan2 674 . 2 (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing)))
18 3anass 1042 . 2 ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing)))
1917, 18bitr4i 267 1 (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  dom cdm 5114  cfv 5888  (class class class)co 6650  s cress 15858  DivRingcdr 18747  SubRingcsubrg 18776  SubDRingcsdrg 37765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-sdrg 37766
This theorem is referenced by:  issdrg2  37768
  Copyright terms: Public domain W3C validator