Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issdrg Structured version   Visualization version   Unicode version

Theorem issdrg 37767
Description: Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015.)
Assertion
Ref Expression
issdrg  |-  ( S  e.  (SubDRing `  R
)  <->  ( R  e.  DivRing 
/\  S  e.  (SubRing `  R )  /\  ( Rs  S )  e.  DivRing ) )

Proof of Theorem issdrg
Dummy variables  w  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sdrg 37766 . . . . 5  |- SubDRing  =  ( w  e.  DivRing  |->  { s  e.  (SubRing `  w
)  |  ( ws  s )  e.  DivRing } )
21dmmptss 5631 . . . 4  |-  dom SubDRing  C_  DivRing
3 elfvdm 6220 . . . 4  |-  ( S  e.  (SubDRing `  R
)  ->  R  e.  dom SubDRing )
42, 3sseldi 3601 . . 3  |-  ( S  e.  (SubDRing `  R
)  ->  R  e.  DivRing )
5 fveq2 6191 . . . . . . 7  |-  ( w  =  R  ->  (SubRing `  w )  =  (SubRing `  R ) )
6 oveq1 6657 . . . . . . . 8  |-  ( w  =  R  ->  (
ws  s )  =  ( Rs  s ) )
76eleq1d 2686 . . . . . . 7  |-  ( w  =  R  ->  (
( ws  s )  e.  DivRing  <->  ( Rs  s )  e.  DivRing ) )
85, 7rabeqbidv 3195 . . . . . 6  |-  ( w  =  R  ->  { s  e.  (SubRing `  w
)  |  ( ws  s )  e.  DivRing }  =  { s  e.  (SubRing `  R )  |  ( Rs  s )  e.  DivRing } )
9 fvex 6201 . . . . . . 7  |-  (SubRing `  R
)  e.  _V
109rabex 4813 . . . . . 6  |-  { s  e.  (SubRing `  R
)  |  ( Rs  s )  e.  DivRing }  e.  _V
118, 1, 10fvmpt 6282 . . . . 5  |-  ( R  e.  DivRing  ->  (SubDRing `  R )  =  { s  e.  (SubRing `  R )  |  ( Rs  s )  e.  DivRing } )
1211eleq2d 2687 . . . 4  |-  ( R  e.  DivRing  ->  ( S  e.  (SubDRing `  R )  <->  S  e.  { s  e.  (SubRing `  R )  |  ( Rs  s )  e.  DivRing } ) )
13 oveq2 6658 . . . . . 6  |-  ( s  =  S  ->  ( Rs  s )  =  ( Rs  S ) )
1413eleq1d 2686 . . . . 5  |-  ( s  =  S  ->  (
( Rs  s )  e.  DivRing  <->  ( Rs  S )  e.  DivRing ) )
1514elrab 3363 . . . 4  |-  ( S  e.  { s  e.  (SubRing `  R )  |  ( Rs  s )  e.  DivRing }  <->  ( S  e.  (SubRing `  R )  /\  ( Rs  S )  e.  DivRing ) )
1612, 15syl6bb 276 . . 3  |-  ( R  e.  DivRing  ->  ( S  e.  (SubDRing `  R )  <->  ( S  e.  (SubRing `  R
)  /\  ( Rs  S
)  e.  DivRing ) ) )
174, 16biadan2 674 . 2  |-  ( S  e.  (SubDRing `  R
)  <->  ( R  e.  DivRing 
/\  ( S  e.  (SubRing `  R )  /\  ( Rs  S )  e.  DivRing ) ) )
18 3anass 1042 . 2  |-  ( ( R  e.  DivRing  /\  S  e.  (SubRing `  R )  /\  ( Rs  S )  e.  DivRing )  <-> 
( R  e.  DivRing  /\  ( S  e.  (SubRing `  R )  /\  ( Rs  S )  e.  DivRing ) ) )
1917, 18bitr4i 267 1  |-  ( S  e.  (SubDRing `  R
)  <->  ( R  e.  DivRing 
/\  S  e.  (SubRing `  R )  /\  ( Rs  S )  e.  DivRing ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   dom cdm 5114   ` cfv 5888  (class class class)co 6650   ↾s cress 15858   DivRingcdr 18747  SubRingcsubrg 18776  SubDRingcsdrg 37765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-sdrg 37766
This theorem is referenced by:  issdrg2  37768
  Copyright terms: Public domain W3C validator