MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuspgr Structured version   Visualization version   GIF version

Theorem isuspgr 26047
Description: The property of being a simple pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 13-Oct-2020.)
Hypotheses
Ref Expression
isuspgr.v 𝑉 = (Vtx‘𝐺)
isuspgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isuspgr (𝐺𝑈 → (𝐺 ∈ USPGraph ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐸(𝑥)

Proof of Theorem isuspgr
Dummy variables 𝑒 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-uspgr 26045 . . 3 USPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}}
21eleq2i 2693 . 2 (𝐺 ∈ USPGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}})
3 fveq2 6191 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isuspgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4syl6eqr 2674 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 5326 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2631 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 5325 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8syl6eq 2672 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 6191 . . . . . . . 8 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isuspgr.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
1210, 11syl6eqr 2674 . . . . . . 7 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 4163 . . . . . 6 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413difeq1d 3727 . . . . 5 ( = 𝐺 → (𝒫 (Vtx‘) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
1514rabeqdv 3194 . . . 4 ( = 𝐺 → {𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
165, 9, 15f1eq123d 6131 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
17 fvexd 6203 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
18 fveq2 6191 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
19 fvexd 6203 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
20 fveq2 6191 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2120adantr 481 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
22 simpr 477 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2322dmeqd 5326 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
24 pweq 4161 . . . . . . . . . 10 (𝑣 = (Vtx‘) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2524ad2antlr 763 . . . . . . . . 9 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2625difeq1d 3727 . . . . . . . 8 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2726rabeqdv 3194 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → {𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
2822, 23, 27f1eq123d 6131 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
2919, 21, 28sbcied2 3473 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
3017, 18, 29sbcied2 3473 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
3130cbvabv 2747 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}} = { ∣ (iEdg‘):dom (iEdg‘)–1-1→{𝑥 ∈ (𝒫 (Vtx‘) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}}
3216, 31elab2g 3353 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
332, 32syl5bb 272 1 (𝐺𝑈 → (𝐺 ∈ USPGraph ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  {crab 2916  Vcvv 3200  [wsbc 3435  cdif 3571  c0 3915  𝒫 cpw 4158  {csn 4177   class class class wbr 4653  dom cdm 5114  1-1wf1 5885  cfv 5888  cle 10075  2c2 11070  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   USPGraph cuspgr 26043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896  df-uspgr 26045
This theorem is referenced by:  uspgrf  26049  isuspgrop  26056  uspgrushgr  26070  uspgrupgr  26071  uspgrupgrushgr  26072  usgruspgr  26073  uspgr1e  26136
  Copyright terms: Public domain W3C validator