![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrupgrushgr | Structured version Visualization version GIF version |
Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020.) |
Ref | Expression |
---|---|
uspgrupgrushgr | ⊢ (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrupgr 26071 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) | |
2 | uspgrushgr 26070 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph ) | |
3 | 1, 2 | jca 554 | . 2 ⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph )) |
4 | eqid 2622 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | eqid 2622 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
6 | 4, 5 | ushgrf 25958 | . . . 4 ⊢ (𝐺 ∈ USHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) |
7 | edgval 25941 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
8 | upgredgss 26027 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) | |
9 | 7, 8 | syl5eqssr 3650 | . . . 4 ⊢ (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) |
10 | f1ssr 6107 | . . . 4 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) | |
11 | 6, 9, 10 | syl2anr 495 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph ) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) |
12 | 4, 5 | isuspgr 26047 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})) |
13 | 12 | adantr 481 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph ) → (𝐺 ∈ USPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})) |
14 | 11, 13 | mpbird 247 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph ) → 𝐺 ∈ USPGraph ) |
15 | 3, 14 | impbii 199 | 1 ⊢ (𝐺 ∈ USPGraph ↔ (𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∈ wcel 1990 {crab 2916 ∖ cdif 3571 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 {csn 4177 class class class wbr 4653 dom cdm 5114 ran crn 5115 –1-1→wf1 5885 ‘cfv 5888 ≤ cle 10075 2c2 11070 #chash 13117 Vtxcvtx 25874 iEdgciedg 25875 Edgcedg 25939 USHGraph cushgr 25952 UPGraph cupgr 25975 USPGraph cuspgr 26043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fv 5896 df-edg 25940 df-ushgr 25954 df-upgr 25977 df-uspgr 26045 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |