![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrge0f | Structured version Visualization version GIF version |
Description: A real function is a nonnegative extended real function if all its values are greater or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
xrge0f | ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6045 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → 𝐹 Fn ℝ) |
3 | ax-resscn 9993 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → ℝ ⊆ ℂ) |
5 | 4, 1 | 0pledm 23440 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘𝑟 ≤ 𝐹 ↔ (ℝ × {0}) ∘𝑟 ≤ 𝐹)) |
6 | 0re 10040 | . . . . . 6 ⊢ 0 ∈ ℝ | |
7 | fnconstg 6093 | . . . . . 6 ⊢ (0 ∈ ℝ → (ℝ × {0}) Fn ℝ) | |
8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → (ℝ × {0}) Fn ℝ) |
9 | reex 10027 | . . . . . 6 ⊢ ℝ ∈ V | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝐹:ℝ⟶ℝ → ℝ ∈ V) |
11 | inidm 3822 | . . . . 5 ⊢ (ℝ ∩ ℝ) = ℝ | |
12 | c0ex 10034 | . . . . . . 7 ⊢ 0 ∈ V | |
13 | 12 | fvconst2 6469 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → ((ℝ × {0})‘𝑥) = 0) |
14 | 13 | adantl 482 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((ℝ × {0})‘𝑥) = 0) |
15 | eqidd 2623 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
16 | 8, 1, 10, 10, 11, 14, 15 | ofrfval 6905 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ((ℝ × {0}) ∘𝑟 ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
17 | ffvelrn 6357 | . . . . . . . 8 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | |
18 | 17 | rexrd 10089 | . . . . . . 7 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ*) |
19 | 18 | biantrurd 529 | . . . . . 6 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹‘𝑥) ↔ ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑥)))) |
20 | elxrge0 12281 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0[,]+∞) ↔ ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝑥))) | |
21 | 19, 20 | syl6bbr 278 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (0 ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑥) ∈ (0[,]+∞))) |
22 | 21 | ralbidva 2985 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) |
23 | 5, 16, 22 | 3bitrd 294 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘𝑟 ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) |
24 | 23 | biimpa 501 | . 2 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞)) |
25 | ffnfv 6388 | . 2 ⊢ (𝐹:ℝ⟶(0[,]+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,]+∞))) | |
26 | 2, 24, 25 | sylanbrc 698 | 1 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ⊆ wss 3574 {csn 4177 class class class wbr 4653 × cxp 5112 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ∘𝑟 cofr 6896 ℂcc 9934 ℝcr 9935 0cc0 9936 +∞cpnf 10071 ℝ*cxr 10073 ≤ cle 10075 [,]cicc 12178 0𝑝c0p 23436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-ofr 6898 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-icc 12182 df-0p 23437 |
This theorem is referenced by: itg2itg1 23503 |
Copyright terms: Public domain | W3C validator |