MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgvallem Structured version   Visualization version   GIF version

Theorem itgvallem 23551
Description: Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
itgvallem.1 (i↑𝐾) = 𝑇
Assertion
Ref Expression
itgvallem (𝑘 = 𝐾 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0))))
Distinct variable groups:   𝑥,𝑘   𝑥,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)   𝑇(𝑥,𝑘)   𝐾(𝑘)

Proof of Theorem itgvallem
StepHypRef Expression
1 oveq2 6658 . . . . . . . . 9 (𝑘 = 𝐾 → (i↑𝑘) = (i↑𝐾))
2 itgvallem.1 . . . . . . . . 9 (i↑𝐾) = 𝑇
31, 2syl6eq 2672 . . . . . . . 8 (𝑘 = 𝐾 → (i↑𝑘) = 𝑇)
43oveq2d 6666 . . . . . . 7 (𝑘 = 𝐾 → (𝐵 / (i↑𝑘)) = (𝐵 / 𝑇))
54fveq2d 6195 . . . . . 6 (𝑘 = 𝐾 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / 𝑇)))
65breq2d 4665 . . . . 5 (𝑘 = 𝐾 → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐵 / 𝑇))))
76anbi2d 740 . . . 4 (𝑘 = 𝐾 → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇)))))
87, 5ifbieq1d 4109 . . 3 (𝑘 = 𝐾 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0))
98mpteq2dv 4745 . 2 (𝑘 = 𝐾 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0)))
109fveq2d 6195 1 (𝑘 = 𝐾 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  ifcif 4086   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  ici 9938  cle 10075   / cdiv 10684  cexp 12860  cre 13837  2citg2 23385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  iblcnlem1  23554  itgcnlem  23556
  Copyright terms: Public domain W3C validator