MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcnlem Structured version   Visualization version   GIF version

Theorem itgcnlem 23556
Description: Expand out the sum in dfitg 23536. (Contributed by Mario Carneiro, 1-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
itgcnlem.s 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
itgcnlem.t 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
itgcnlem.u 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
itgcnlem.v ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnlem.i (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgcnlem (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅𝑆) + (i · (𝑇𝑈))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)

Proof of Theorem itgcnlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
21dfitg 23536 . . 3 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
3 nn0uz 11722 . . . . 5 0 = (ℤ‘0)
4 df-3 11080 . . . . 5 3 = (2 + 1)
5 oveq2 6658 . . . . . . 7 (𝑘 = 3 → (i↑𝑘) = (i↑3))
6 i3 12966 . . . . . . 7 (i↑3) = -i
75, 6syl6eq 2672 . . . . . 6 (𝑘 = 3 → (i↑𝑘) = -i)
86itgvallem 23551 . . . . . 6 (𝑘 = 3 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
97, 8oveq12d 6668 . . . . 5 (𝑘 = 3 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))))
10 ax-icn 9995 . . . . . . . 8 i ∈ ℂ
1110a1i 11 . . . . . . 7 (𝜑 → i ∈ ℂ)
12 expcl 12878 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
1311, 12sylan 488 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
14 nn0z 11400 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
15 eqidd 2623 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
16 eqidd 2623 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
17 itgcnlem.i . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
18 itgcnlem.v . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
1915, 16, 17, 18iblitg 23535 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
2019recnd 10068 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ)
2114, 20sylan2 491 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ)
2213, 21mulcld 10060 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ)
23 df-2 11079 . . . . . 6 2 = (1 + 1)
24 oveq2 6658 . . . . . . . 8 (𝑘 = 2 → (i↑𝑘) = (i↑2))
25 i2 12965 . . . . . . . 8 (i↑2) = -1
2624, 25syl6eq 2672 . . . . . . 7 (𝑘 = 2 → (i↑𝑘) = -1)
2725itgvallem 23551 . . . . . . 7 (𝑘 = 2 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
2826, 27oveq12d 6668 . . . . . 6 (𝑘 = 2 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))))
29 1e0p1 11552 . . . . . . 7 1 = (0 + 1)
30 oveq2 6658 . . . . . . . . 9 (𝑘 = 1 → (i↑𝑘) = (i↑1))
31 exp1 12866 . . . . . . . . . 10 (i ∈ ℂ → (i↑1) = i)
3210, 31ax-mp 5 . . . . . . . . 9 (i↑1) = i
3330, 32syl6eq 2672 . . . . . . . 8 (𝑘 = 1 → (i↑𝑘) = i)
3432itgvallem 23551 . . . . . . . 8 (𝑘 = 1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
3533, 34oveq12d 6668 . . . . . . 7 (𝑘 = 1 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))))
36 0z 11388 . . . . . . . . . 10 0 ∈ ℤ
37 iblmbf 23534 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
3817, 37syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
3938, 18mbfmptcl 23404 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4039div1d 10793 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐵 / 1) = 𝐵)
4140fveq2d 6195 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / 1)) = (ℜ‘𝐵))
4241ibllem 23531 . . . . . . . . . . . . . . . 16 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
4342mpteq2dv 4745 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4443fveq2d 6195 . . . . . . . . . . . . . 14 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))))
45 itgcnlem.r . . . . . . . . . . . . . 14 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4644, 45syl6reqr 2675 . . . . . . . . . . . . 13 (𝜑𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))))
4746oveq2d 6666 . . . . . . . . . . . 12 (𝜑 → (1 · 𝑅) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
48 itgcnlem.s . . . . . . . . . . . . . . . . . 18 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
49 itgcnlem.t . . . . . . . . . . . . . . . . . 18 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
50 itgcnlem.u . . . . . . . . . . . . . . . . . 18 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
5145, 48, 49, 50, 18iblcnlem 23555 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
5217, 51mpbid 222 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
5352simp2d 1074 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ))
5453simpld 475 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
5554recnd 10068 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℂ)
5655mulid2d 10058 . . . . . . . . . . . 12 (𝜑 → (1 · 𝑅) = 𝑅)
5747, 56eqtr3d 2658 . . . . . . . . . . 11 (𝜑 → (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) = 𝑅)
5857, 55eqeltrd 2701 . . . . . . . . . 10 (𝜑 → (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) ∈ ℂ)
59 oveq2 6658 . . . . . . . . . . . . 13 (𝑘 = 0 → (i↑𝑘) = (i↑0))
60 exp0 12864 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑0) = 1)
6110, 60ax-mp 5 . . . . . . . . . . . . 13 (i↑0) = 1
6259, 61syl6eq 2672 . . . . . . . . . . . 12 (𝑘 = 0 → (i↑𝑘) = 1)
6361itgvallem 23551 . . . . . . . . . . . 12 (𝑘 = 0 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))))
6462, 63oveq12d 6668 . . . . . . . . . . 11 (𝑘 = 0 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6564fsum1 14476 . . . . . . . . . 10 ((0 ∈ ℤ ∧ (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6636, 58, 65sylancr 695 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6766, 57eqtrd 2656 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = 𝑅)
68 0nn0 11307 . . . . . . . 8 0 ∈ ℕ0
6967, 68jctil 560 . . . . . . 7 (𝜑 → (0 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = 𝑅))
70 imval 13847 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
7139, 70syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
7271ibllem 23531 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))
7372mpteq2dv 4745 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))
7473fveq2d 6195 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
7549, 74syl5req 2669 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) = 𝑇)
7675oveq2d 6666 . . . . . . . 8 (𝜑 → (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))) = (i · 𝑇))
7776oveq2d 6666 . . . . . . 7 (𝜑 → (𝑅 + (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))) = (𝑅 + (i · 𝑇)))
783, 29, 35, 22, 69, 77fsump1i 14500 . . . . . 6 (𝜑 → (1 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...1)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (𝑅 + (i · 𝑇))))
7939renegd 13949 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
80 ax-1cn 9994 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
8180negnegi 10351 . . . . . . . . . . . . . . . . . . 19 --1 = 1
8281oveq2i 6661 . . . . . . . . . . . . . . . . . 18 (-𝐵 / --1) = (-𝐵 / 1)
8339negcld 10379 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
8483div1d 10793 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (-𝐵 / 1) = -𝐵)
8582, 84syl5eq 2668 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (-𝐵 / --1) = -𝐵)
8680negcli 10349 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
87 neg1ne0 11126 . . . . . . . . . . . . . . . . . . 19 -1 ≠ 0
88 div2neg 10748 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℂ ∧ -1 ∈ ℂ ∧ -1 ≠ 0) → (-𝐵 / --1) = (𝐵 / -1))
8986, 87, 88mp3an23 1416 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℂ → (-𝐵 / --1) = (𝐵 / -1))
9039, 89syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (-𝐵 / --1) = (𝐵 / -1))
9185, 90eqtr3d 2658 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → -𝐵 = (𝐵 / -1))
9291fveq2d 6195 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = (ℜ‘(𝐵 / -1)))
9379, 92eqtr3d 2658 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) = (ℜ‘(𝐵 / -1)))
9493ibllem 23531 . . . . . . . . . . . . 13 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))
9594mpteq2dv 4745 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))
9695fveq2d 6195 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
9748, 96syl5eq 2668 . . . . . . . . . 10 (𝜑𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
9897oveq2d 6666 . . . . . . . . 9 (𝜑 → (-1 · 𝑆) = (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))))
9953simprd 479 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ)
10099recnd 10068 . . . . . . . . . 10 (𝜑𝑆 ∈ ℂ)
101100mulm1d 10482 . . . . . . . . 9 (𝜑 → (-1 · 𝑆) = -𝑆)
10298, 101eqtr3d 2658 . . . . . . . 8 (𝜑 → (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))) = -𝑆)
103102oveq2d 6666 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) + (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))) = ((𝑅 + (i · 𝑇)) + -𝑆))
10452simp3d 1075 . . . . . . . . . . . 12 (𝜑 → (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))
105104simpld 475 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ)
106105recnd 10068 . . . . . . . . . 10 (𝜑𝑇 ∈ ℂ)
107 mulcl 10020 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝑇 ∈ ℂ) → (i · 𝑇) ∈ ℂ)
10810, 106, 107sylancr 695 . . . . . . . . 9 (𝜑 → (i · 𝑇) ∈ ℂ)
10955, 108addcld 10059 . . . . . . . 8 (𝜑 → (𝑅 + (i · 𝑇)) ∈ ℂ)
110109, 100negsubd 10398 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) + -𝑆) = ((𝑅 + (i · 𝑇)) − 𝑆))
11155, 108, 100addsubd 10413 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) − 𝑆) = ((𝑅𝑆) + (i · 𝑇)))
112103, 110, 1113eqtrd 2660 . . . . . 6 (𝜑 → ((𝑅 + (i · 𝑇)) + (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))) = ((𝑅𝑆) + (i · 𝑇)))
1133, 23, 28, 22, 78, 112fsump1i 14500 . . . . 5 (𝜑 → (2 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...2)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((𝑅𝑆) + (i · 𝑇))))
114 imval 13847 . . . . . . . . . . . . . 14 (-𝐵 ∈ ℂ → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
11583, 114syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
11639imnegd 13950 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
11710negnegi 10351 . . . . . . . . . . . . . . . . 17 --i = i
118117eqcomi 2631 . . . . . . . . . . . . . . . 16 i = --i
119118oveq2i 6661 . . . . . . . . . . . . . . 15 (-𝐵 / i) = (-𝐵 / --i)
12010negcli 10349 . . . . . . . . . . . . . . . . 17 -i ∈ ℂ
121 ine0 10465 . . . . . . . . . . . . . . . . . 18 i ≠ 0
12210, 121negne0i 10356 . . . . . . . . . . . . . . . . 17 -i ≠ 0
123 div2neg 10748 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℂ ∧ -i ∈ ℂ ∧ -i ≠ 0) → (-𝐵 / --i) = (𝐵 / -i))
124120, 122, 123mp3an23 1416 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℂ → (-𝐵 / --i) = (𝐵 / -i))
12539, 124syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (-𝐵 / --i) = (𝐵 / -i))
126119, 125syl5eq 2668 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (-𝐵 / i) = (𝐵 / -i))
127126fveq2d 6195 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℜ‘(-𝐵 / i)) = (ℜ‘(𝐵 / -i)))
128115, 116, 1273eqtr3d 2664 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) = (ℜ‘(𝐵 / -i)))
129128ibllem 23531 . . . . . . . . . . 11 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))
130129mpteq2dv 4745 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))
131130fveq2d 6195 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
13250, 131syl5eq 2668 . . . . . . . 8 (𝜑𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
133132oveq2d 6666 . . . . . . 7 (𝜑 → (-i · 𝑈) = (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))))
134104simprd 479 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
135134recnd 10068 . . . . . . . 8 (𝜑𝑈 ∈ ℂ)
136 mulneg12 10468 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑈 ∈ ℂ) → (-i · 𝑈) = (i · -𝑈))
13710, 135, 136sylancr 695 . . . . . . 7 (𝜑 → (-i · 𝑈) = (i · -𝑈))
138133, 137eqtr3d 2658 . . . . . 6 (𝜑 → (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))) = (i · -𝑈))
139138oveq2d 6666 . . . . 5 (𝜑 → (((𝑅𝑆) + (i · 𝑇)) + (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
1403, 4, 9, 22, 113, 139fsump1i 14500 . . . 4 (𝜑 → (3 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈))))
141140simprd 479 . . 3 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
1422, 141syl5eq 2668 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
14355, 100subcld 10392 . . 3 (𝜑 → (𝑅𝑆) ∈ ℂ)
144135negcld 10379 . . . 4 (𝜑 → -𝑈 ∈ ℂ)
145 mulcl 10020 . . . 4 ((i ∈ ℂ ∧ -𝑈 ∈ ℂ) → (i · -𝑈) ∈ ℂ)
14610, 144, 145sylancr 695 . . 3 (𝜑 → (i · -𝑈) ∈ ℂ)
147143, 108, 146addassd 10062 . 2 (𝜑 → (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)) = ((𝑅𝑆) + ((i · 𝑇) + (i · -𝑈))))
14811, 106, 144adddid 10064 . . . 4 (𝜑 → (i · (𝑇 + -𝑈)) = ((i · 𝑇) + (i · -𝑈)))
149106, 135negsubd 10398 . . . . 5 (𝜑 → (𝑇 + -𝑈) = (𝑇𝑈))
150149oveq2d 6666 . . . 4 (𝜑 → (i · (𝑇 + -𝑈)) = (i · (𝑇𝑈)))
151148, 150eqtr3d 2658 . . 3 (𝜑 → ((i · 𝑇) + (i · -𝑈)) = (i · (𝑇𝑈)))
152151oveq2d 6666 . 2 (𝜑 → ((𝑅𝑆) + ((i · 𝑇) + (i · -𝑈))) = ((𝑅𝑆) + (i · (𝑇𝑈))))
153142, 147, 1523eqtrd 2660 1 (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅𝑆) + (i · (𝑇𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  ifcif 4086   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937  ici 9938   + caddc 9939   · cmul 9941  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  2c2 11070  3c3 11071  0cn0 11292  cz 11377  ...cfz 12326  cexp 12860  cre 13837  cim 13838  Σcsu 14416  MblFncmbf 23383  2citg2 23385  𝐿1cibl 23386  citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-mbf 23388  df-ibl 23391  df-itg 23392
This theorem is referenced by:  itgrevallem1  23561  itgcnval  23566
  Copyright terms: Public domain W3C validator