MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgvallem Structured version   Visualization version   Unicode version

Theorem itgvallem 23551
Description: Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
itgvallem.1  |-  ( _i
^ K )  =  T
Assertion
Ref Expression
itgvallem  |-  ( k  =  K  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  T ) ) ) ,  ( Re
`  ( B  /  T ) ) ,  0 ) ) ) )
Distinct variable groups:    x, k    x, K
Allowed substitution hints:    A( x, k)    B( x, k)    T( x, k)    K( k)

Proof of Theorem itgvallem
StepHypRef Expression
1 oveq2 6658 . . . . . . . . 9  |-  ( k  =  K  ->  (
_i ^ k )  =  ( _i ^ K ) )
2 itgvallem.1 . . . . . . . . 9  |-  ( _i
^ K )  =  T
31, 2syl6eq 2672 . . . . . . . 8  |-  ( k  =  K  ->  (
_i ^ k )  =  T )
43oveq2d 6666 . . . . . . 7  |-  ( k  =  K  ->  ( B  /  ( _i ^
k ) )  =  ( B  /  T
) )
54fveq2d 6195 . . . . . 6  |-  ( k  =  K  ->  (
Re `  ( B  /  ( _i ^
k ) ) )  =  ( Re `  ( B  /  T
) ) )
65breq2d 4665 . . . . 5  |-  ( k  =  K  ->  (
0  <_  ( Re `  ( B  /  (
_i ^ k ) ) )  <->  0  <_  ( Re `  ( B  /  T ) ) ) )
76anbi2d 740 . . . 4  |-  ( k  =  K  ->  (
( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) )  <-> 
( x  e.  A  /\  0  <_  ( Re
`  ( B  /  T ) ) ) ) )
87, 5ifbieq1d 4109 . . 3  |-  ( k  =  K  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  T ) ) ) ,  ( Re
`  ( B  /  T ) ) ,  0 ) )
98mpteq2dv 4745 . 2  |-  ( k  =  K  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  T ) ) ) ,  ( Re
`  ( B  /  T ) ) ,  0 ) ) )
109fveq2d 6195 1  |-  ( k  =  K  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  T ) ) ) ,  ( Re
`  ( B  /  T ) ) ,  0 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   _ici 9938    <_ cle 10075    / cdiv 10684   ^cexp 12860   Recre 13837   S.2citg2 23385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  iblcnlem1  23554  itgcnlem  23556
  Copyright terms: Public domain W3C validator