![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunpreima | Structured version Visualization version GIF version |
Description: Preimage of an indexed union. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
Ref | Expression |
---|---|
iunpreima | ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 4524 | . . . . 5 ⊢ ((𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (Fun 𝐹 → ((𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵)) |
3 | 2 | rabbidv 3189 | . . 3 ⊢ (Fun 𝐹 → {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵}) |
4 | funfn 5918 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
5 | fncnvima2 6339 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵}) | |
6 | 4, 5 | sylbi 207 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ ∪ 𝑥 ∈ 𝐴 𝐵}) |
7 | iunrab 4567 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵} | |
8 | 7 | a1i 11 | . . 3 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵} = {𝑦 ∈ dom 𝐹 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵}) |
9 | 3, 6, 8 | 3eqtr4d 2666 | . 2 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) |
10 | fncnvima2 6339 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) | |
11 | 4, 10 | sylbi 207 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐵) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) |
12 | 11 | iuneq2d 4547 | . 2 ⊢ (Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ∈ 𝐵}) |
13 | 9, 12 | eqtr4d 2659 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 {crab 2916 ∪ ciun 4520 ◡ccnv 5113 dom cdm 5114 “ cima 5117 Fun wfun 5882 Fn wfn 5883 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |