MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpint Structured version   Visualization version   GIF version

Theorem ixpint 7935
Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
Assertion
Ref Expression
ixpint (𝐵 ≠ ∅ → X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem ixpint
StepHypRef Expression
1 ixpeq2 7922 . . 3 (∀𝑥𝐴 𝐵 = 𝑦𝐵 𝑦X𝑥𝐴 𝐵 = X𝑥𝐴 𝑦𝐵 𝑦)
2 intiin 4574 . . . 4 𝐵 = 𝑦𝐵 𝑦
32a1i 11 . . 3 (𝑥𝐴 𝐵 = 𝑦𝐵 𝑦)
41, 3mprg 2926 . 2 X𝑥𝐴 𝐵 = X𝑥𝐴 𝑦𝐵 𝑦
5 ixpiin 7934 . 2 (𝐵 ≠ ∅ → X𝑥𝐴 𝑦𝐵 𝑦 = 𝑦𝐵 X𝑥𝐴 𝑦)
64, 5syl5eq 2668 1 (𝐵 ≠ ∅ → X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wne 2794  c0 3915   cint 4475   ciin 4521  Xcixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iin 4523  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ixp 7909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator