MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem11 Structured version   Visualization version   GIF version

Theorem kmlem11 8982
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.)
Hypothesis
Ref Expression
kmlem9.1 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
Assertion
Ref Expression
kmlem11 (𝑧𝑥 → (𝑧 𝐴) = (𝑧 (𝑥 ∖ {𝑧})))
Distinct variable groups:   𝑥,𝑧,𝑢,𝑡   𝑧,𝐴
Allowed substitution hints:   𝐴(𝑥,𝑢,𝑡)

Proof of Theorem kmlem11
StepHypRef Expression
1 kmlem9.1 . . . . . 6 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
21unieqi 4445 . . . . 5 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
3 vex 3203 . . . . . . 7 𝑡 ∈ V
43difexi 4809 . . . . . 6 (𝑡 (𝑥 ∖ {𝑡})) ∈ V
54dfiun2 4554 . . . . 5 𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})) = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
62, 5eqtr4i 2647 . . . 4 𝐴 = 𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡}))
76ineq2i 3811 . . 3 (𝑧 𝐴) = (𝑧 𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})))
8 iunin2 4584 . . 3 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = (𝑧 𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})))
97, 8eqtr4i 2647 . 2 (𝑧 𝐴) = 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡})))
10 undif2 4044 . . . . . 6 ({𝑧} ∪ (𝑥 ∖ {𝑧})) = ({𝑧} ∪ 𝑥)
11 snssi 4339 . . . . . . 7 (𝑧𝑥 → {𝑧} ⊆ 𝑥)
12 ssequn1 3783 . . . . . . 7 ({𝑧} ⊆ 𝑥 ↔ ({𝑧} ∪ 𝑥) = 𝑥)
1311, 12sylib 208 . . . . . 6 (𝑧𝑥 → ({𝑧} ∪ 𝑥) = 𝑥)
1410, 13syl5req 2669 . . . . 5 (𝑧𝑥𝑥 = ({𝑧} ∪ (𝑥 ∖ {𝑧})))
1514iuneq1d 4545 . . . 4 (𝑧𝑥 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))))
16 iunxun 4605 . . . . . 6 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ( 𝑡 ∈ {𝑧} (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))))
17 vex 3203 . . . . . . . 8 𝑧 ∈ V
18 difeq1 3721 . . . . . . . . . 10 (𝑡 = 𝑧 → (𝑡 (𝑥 ∖ {𝑡})) = (𝑧 (𝑥 ∖ {𝑡})))
19 sneq 4187 . . . . . . . . . . . . 13 (𝑡 = 𝑧 → {𝑡} = {𝑧})
2019difeq2d 3728 . . . . . . . . . . . 12 (𝑡 = 𝑧 → (𝑥 ∖ {𝑡}) = (𝑥 ∖ {𝑧}))
2120unieqd 4446 . . . . . . . . . . 11 (𝑡 = 𝑧 (𝑥 ∖ {𝑡}) = (𝑥 ∖ {𝑧}))
2221difeq2d 3728 . . . . . . . . . 10 (𝑡 = 𝑧 → (𝑧 (𝑥 ∖ {𝑡})) = (𝑧 (𝑥 ∖ {𝑧})))
2318, 22eqtrd 2656 . . . . . . . . 9 (𝑡 = 𝑧 → (𝑡 (𝑥 ∖ {𝑡})) = (𝑧 (𝑥 ∖ {𝑧})))
2423ineq2d 3814 . . . . . . . 8 (𝑡 = 𝑧 → (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = (𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))))
2517, 24iunxsn 4603 . . . . . . 7 𝑡 ∈ {𝑧} (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = (𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧})))
2625uneq1i 3763 . . . . . 6 ( 𝑡 ∈ {𝑧} (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡})))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))))
2716, 26eqtri 2644 . . . . 5 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))))
28 eldifsni 4320 . . . . . . . . . 10 (𝑡 ∈ (𝑥 ∖ {𝑧}) → 𝑡𝑧)
29 incom 3805 . . . . . . . . . . . 12 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑧)
30 kmlem4 8975 . . . . . . . . . . . 12 ((𝑧𝑥𝑡𝑧) → ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑧) = ∅)
3129, 30syl5eq 2668 . . . . . . . . . . 11 ((𝑧𝑥𝑡𝑧) → (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅)
3231ex 450 . . . . . . . . . 10 (𝑧𝑥 → (𝑡𝑧 → (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅))
3328, 32syl5 34 . . . . . . . . 9 (𝑧𝑥 → (𝑡 ∈ (𝑥 ∖ {𝑧}) → (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅))
3433ralrimiv 2965 . . . . . . . 8 (𝑧𝑥 → ∀𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅)
35 iuneq2 4537 . . . . . . . 8 (∀𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅ → 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = 𝑡 ∈ (𝑥 ∖ {𝑧})∅)
3634, 35syl 17 . . . . . . 7 (𝑧𝑥 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = 𝑡 ∈ (𝑥 ∖ {𝑧})∅)
37 iun0 4576 . . . . . . 7 𝑡 ∈ (𝑥 ∖ {𝑧})∅ = ∅
3836, 37syl6eq 2672 . . . . . 6 (𝑧𝑥 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅)
3938uneq2d 3767 . . . . 5 (𝑧𝑥 → ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡})))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅))
4027, 39syl5eq 2668 . . . 4 (𝑧𝑥 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅))
4115, 40eqtrd 2656 . . 3 (𝑧𝑥 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅))
42 un0 3967 . . . 4 ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅) = (𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧})))
43 indif 3869 . . . 4 (𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) = (𝑧 (𝑥 ∖ {𝑧}))
4442, 43eqtri 2644 . . 3 ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅) = (𝑧 (𝑥 ∖ {𝑧}))
4541, 44syl6eq 2672 . 2 (𝑧𝑥 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = (𝑧 (𝑥 ∖ {𝑧})))
469, 45syl5eq 2668 1 (𝑧𝑥 → (𝑧 𝐴) = (𝑧 (𝑥 ∖ {𝑧})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177   cuni 4436   ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-uni 4437  df-iun 4522
This theorem is referenced by:  kmlem12  8983
  Copyright terms: Public domain W3C validator