| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kmlem11 | Structured version Visualization version Unicode version | ||
| Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.) |
| Ref | Expression |
|---|---|
| kmlem9.1 |
|
| Ref | Expression |
|---|---|
| kmlem11 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem9.1 |
. . . . . 6
| |
| 2 | 1 | unieqi 4445 |
. . . . 5
|
| 3 | vex 3203 |
. . . . . . 7
| |
| 4 | 3 | difexi 4809 |
. . . . . 6
|
| 5 | 4 | dfiun2 4554 |
. . . . 5
|
| 6 | 2, 5 | eqtr4i 2647 |
. . . 4
|
| 7 | 6 | ineq2i 3811 |
. . 3
|
| 8 | iunin2 4584 |
. . 3
| |
| 9 | 7, 8 | eqtr4i 2647 |
. 2
|
| 10 | undif2 4044 |
. . . . . 6
| |
| 11 | snssi 4339 |
. . . . . . 7
| |
| 12 | ssequn1 3783 |
. . . . . . 7
| |
| 13 | 11, 12 | sylib 208 |
. . . . . 6
|
| 14 | 10, 13 | syl5req 2669 |
. . . . 5
|
| 15 | 14 | iuneq1d 4545 |
. . . 4
|
| 16 | iunxun 4605 |
. . . . . 6
| |
| 17 | vex 3203 |
. . . . . . . 8
| |
| 18 | difeq1 3721 |
. . . . . . . . . 10
| |
| 19 | sneq 4187 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | difeq2d 3728 |
. . . . . . . . . . . 12
|
| 21 | 20 | unieqd 4446 |
. . . . . . . . . . 11
|
| 22 | 21 | difeq2d 3728 |
. . . . . . . . . 10
|
| 23 | 18, 22 | eqtrd 2656 |
. . . . . . . . 9
|
| 24 | 23 | ineq2d 3814 |
. . . . . . . 8
|
| 25 | 17, 24 | iunxsn 4603 |
. . . . . . 7
|
| 26 | 25 | uneq1i 3763 |
. . . . . 6
|
| 27 | 16, 26 | eqtri 2644 |
. . . . 5
|
| 28 | eldifsni 4320 |
. . . . . . . . . 10
| |
| 29 | incom 3805 |
. . . . . . . . . . . 12
| |
| 30 | kmlem4 8975 |
. . . . . . . . . . . 12
| |
| 31 | 29, 30 | syl5eq 2668 |
. . . . . . . . . . 11
|
| 32 | 31 | ex 450 |
. . . . . . . . . 10
|
| 33 | 28, 32 | syl5 34 |
. . . . . . . . 9
|
| 34 | 33 | ralrimiv 2965 |
. . . . . . . 8
|
| 35 | iuneq2 4537 |
. . . . . . . 8
| |
| 36 | 34, 35 | syl 17 |
. . . . . . 7
|
| 37 | iun0 4576 |
. . . . . . 7
| |
| 38 | 36, 37 | syl6eq 2672 |
. . . . . 6
|
| 39 | 38 | uneq2d 3767 |
. . . . 5
|
| 40 | 27, 39 | syl5eq 2668 |
. . . 4
|
| 41 | 15, 40 | eqtrd 2656 |
. . 3
|
| 42 | un0 3967 |
. . . 4
| |
| 43 | indif 3869 |
. . . 4
| |
| 44 | 42, 43 | eqtri 2644 |
. . 3
|
| 45 | 41, 44 | syl6eq 2672 |
. 2
|
| 46 | 9, 45 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-uni 4437 df-iun 4522 |
| This theorem is referenced by: kmlem12 8983 |
| Copyright terms: Public domain | W3C validator |