MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem11 Structured version   Visualization version   Unicode version

Theorem kmlem11 8982
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.)
Hypothesis
Ref Expression
kmlem9.1  |-  A  =  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  {
t } ) ) }
Assertion
Ref Expression
kmlem11  |-  ( z  e.  x  ->  (
z  i^i  U. A )  =  ( z  \  U. ( x  \  {
z } ) ) )
Distinct variable groups:    x, z, u, t    z, A
Allowed substitution hints:    A( x, u, t)

Proof of Theorem kmlem11
StepHypRef Expression
1 kmlem9.1 . . . . . 6  |-  A  =  { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  {
t } ) ) }
21unieqi 4445 . . . . 5  |-  U. A  =  U. { u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  { t } ) ) }
3 vex 3203 . . . . . . 7  |-  t  e. 
_V
43difexi 4809 . . . . . 6  |-  ( t 
\  U. ( x  \  { t } ) )  e.  _V
54dfiun2 4554 . . . . 5  |-  U_ t  e.  x  ( t  \  U. ( x  \  { t } ) )  =  U. {
u  |  E. t  e.  x  u  =  ( t  \  U. ( x  \  { t } ) ) }
62, 5eqtr4i 2647 . . . 4  |-  U. A  =  U_ t  e.  x  ( t  \  U. ( x  \  { t } ) )
76ineq2i 3811 . . 3  |-  ( z  i^i  U. A )  =  ( z  i^i  U_ t  e.  x  ( t  \  U. ( x  \  { t } ) ) )
8 iunin2 4584 . . 3  |-  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( z  i^i  U_ t  e.  x  ( t  \  U. ( x  \  { t } ) ) )
97, 8eqtr4i 2647 . 2  |-  ( z  i^i  U. A )  =  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )
10 undif2 4044 . . . . . 6  |-  ( { z }  u.  (
x  \  { z } ) )  =  ( { z }  u.  x )
11 snssi 4339 . . . . . . 7  |-  ( z  e.  x  ->  { z }  C_  x )
12 ssequn1 3783 . . . . . . 7  |-  ( { z }  C_  x  <->  ( { z }  u.  x )  =  x )
1311, 12sylib 208 . . . . . 6  |-  ( z  e.  x  ->  ( { z }  u.  x )  =  x )
1410, 13syl5req 2669 . . . . 5  |-  ( z  e.  x  ->  x  =  ( { z }  u.  ( x 
\  { z } ) ) )
1514iuneq1d 4545 . . . 4  |-  ( z  e.  x  ->  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  U_ t  e.  ( { z }  u.  ( x  \  { z } ) ) ( z  i^i  ( t  \  U. ( x  \  { t } ) ) ) )
16 iunxun 4605 . . . . . 6  |-  U_ t  e.  ( { z }  u.  ( x  \  { z } ) ) ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( U_ t  e.  { z }  (
z  i^i  ( t  \  U. ( x  \  { t } ) ) )  u.  U_ t  e.  ( x  \  { z } ) ( z  i^i  (
t  \  U. (
x  \  { t } ) ) ) )
17 vex 3203 . . . . . . . 8  |-  z  e. 
_V
18 difeq1 3721 . . . . . . . . . 10  |-  ( t  =  z  ->  (
t  \  U. (
x  \  { t } ) )  =  ( z  \  U. ( x  \  { t } ) ) )
19 sneq 4187 . . . . . . . . . . . . 13  |-  ( t  =  z  ->  { t }  =  { z } )
2019difeq2d 3728 . . . . . . . . . . . 12  |-  ( t  =  z  ->  (
x  \  { t } )  =  ( x  \  { z } ) )
2120unieqd 4446 . . . . . . . . . . 11  |-  ( t  =  z  ->  U. (
x  \  { t } )  =  U. ( x  \  { z } ) )
2221difeq2d 3728 . . . . . . . . . 10  |-  ( t  =  z  ->  (
z  \  U. (
x  \  { t } ) )  =  ( z  \  U. ( x  \  { z } ) ) )
2318, 22eqtrd 2656 . . . . . . . . 9  |-  ( t  =  z  ->  (
t  \  U. (
x  \  { t } ) )  =  ( z  \  U. ( x  \  { z } ) ) )
2423ineq2d 3814 . . . . . . . 8  |-  ( t  =  z  ->  (
z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( z  i^i  ( z 
\  U. ( x  \  { z } ) ) ) )
2517, 24iunxsn 4603 . . . . . . 7  |-  U_ t  e.  { z }  (
z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( z  i^i  ( z 
\  U. ( x  \  { z } ) ) )
2625uneq1i 3763 . . . . . 6  |-  ( U_ t  e.  { z }  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  u.  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  { z } ) ) )  u.  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) ) )
2716, 26eqtri 2644 . . . . 5  |-  U_ t  e.  ( { z }  u.  ( x  \  { z } ) ) ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  {
z } ) ) )  u.  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) ) )
28 eldifsni 4320 . . . . . . . . . 10  |-  ( t  e.  ( x  \  { z } )  ->  t  =/=  z
)
29 incom 3805 . . . . . . . . . . . 12  |-  ( z  i^i  ( t  \  U. ( x  \  {
t } ) ) )  =  ( ( t  \  U. (
x  \  { t } ) )  i^i  z )
30 kmlem4 8975 . . . . . . . . . . . 12  |-  ( ( z  e.  x  /\  t  =/=  z )  -> 
( ( t  \  U. ( x  \  {
t } ) )  i^i  z )  =  (/) )
3129, 30syl5eq 2668 . . . . . . . . . . 11  |-  ( ( z  e.  x  /\  t  =/=  z )  -> 
( z  i^i  (
t  \  U. (
x  \  { t } ) ) )  =  (/) )
3231ex 450 . . . . . . . . . 10  |-  ( z  e.  x  ->  (
t  =/=  z  -> 
( z  i^i  (
t  \  U. (
x  \  { t } ) ) )  =  (/) ) )
3328, 32syl5 34 . . . . . . . . 9  |-  ( z  e.  x  ->  (
t  e.  ( x 
\  { z } )  ->  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  (/) ) )
3433ralrimiv 2965 . . . . . . . 8  |-  ( z  e.  x  ->  A. t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) )  =  (/) )
35 iuneq2 4537 . . . . . . . 8  |-  ( A. t  e.  ( x  \  { z } ) ( z  i^i  (
t  \  U. (
x  \  { t } ) ) )  =  (/)  ->  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) )  =  U_ t  e.  ( x  \  { z } )
(/) )
3634, 35syl 17 . . . . . . 7  |-  ( z  e.  x  ->  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) )  =  U_ t  e.  ( x  \  { z } )
(/) )
37 iun0 4576 . . . . . . 7  |-  U_ t  e.  ( x  \  {
z } ) (/)  =  (/)
3836, 37syl6eq 2672 . . . . . 6  |-  ( z  e.  x  ->  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) )  =  (/) )
3938uneq2d 3767 . . . . 5  |-  ( z  e.  x  ->  (
( z  i^i  (
z  \  U. (
x  \  { z } ) ) )  u.  U_ t  e.  ( x  \  {
z } ) ( z  i^i  ( t 
\  U. ( x  \  { t } ) ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  { z } ) ) )  u.  (/) ) )
4027, 39syl5eq 2668 . . . 4  |-  ( z  e.  x  ->  U_ t  e.  ( { z }  u.  ( x  \  { z } ) ) ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  {
z } ) ) )  u.  (/) ) )
4115, 40eqtrd 2656 . . 3  |-  ( z  e.  x  ->  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( ( z  i^i  ( z  \  U. ( x  \  {
z } ) ) )  u.  (/) ) )
42 un0 3967 . . . 4  |-  ( ( z  i^i  ( z 
\  U. ( x  \  { z } ) ) )  u.  (/) )  =  ( z  i^i  (
z  \  U. (
x  \  { z } ) ) )
43 indif 3869 . . . 4  |-  ( z  i^i  ( z  \  U. ( x  \  {
z } ) ) )  =  ( z 
\  U. ( x  \  { z } ) )
4442, 43eqtri 2644 . . 3  |-  ( ( z  i^i  ( z 
\  U. ( x  \  { z } ) ) )  u.  (/) )  =  ( z  \  U. ( x  \  { z } ) )
4541, 44syl6eq 2672 . 2  |-  ( z  e.  x  ->  U_ t  e.  x  ( z  i^i  ( t  \  U. ( x  \  { t } ) ) )  =  ( z  \  U. ( x  \  {
z } ) ) )
469, 45syl5eq 2668 1  |-  ( z  e.  x  ->  (
z  i^i  U. A )  =  ( z  \  U. ( x  \  {
z } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   U_ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-uni 4437  df-iun 4522
This theorem is referenced by:  kmlem12  8983
  Copyright terms: Public domain W3C validator