MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem12 Structured version   Visualization version   GIF version

Theorem kmlem12 8983
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 27-Mar-2004.)
Hypothesis
Ref Expression
kmlem9.1 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
Assertion
Ref Expression
kmlem12 (∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ → (∀𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 𝐴)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝑢,𝑡   𝑦,𝐴,𝑧,𝑣
Allowed substitution hints:   𝐴(𝑥,𝑢,𝑡)

Proof of Theorem kmlem12
StepHypRef Expression
1 difeq1 3721 . . . . . . 7 (𝑡 = 𝑧 → (𝑡 (𝑥 ∖ {𝑡})) = (𝑧 (𝑥 ∖ {𝑡})))
2 sneq 4187 . . . . . . . . . 10 (𝑡 = 𝑧 → {𝑡} = {𝑧})
32difeq2d 3728 . . . . . . . . 9 (𝑡 = 𝑧 → (𝑥 ∖ {𝑡}) = (𝑥 ∖ {𝑧}))
43unieqd 4446 . . . . . . . 8 (𝑡 = 𝑧 (𝑥 ∖ {𝑡}) = (𝑥 ∖ {𝑧}))
54difeq2d 3728 . . . . . . 7 (𝑡 = 𝑧 → (𝑧 (𝑥 ∖ {𝑡})) = (𝑧 (𝑥 ∖ {𝑧})))
61, 5eqtrd 2656 . . . . . 6 (𝑡 = 𝑧 → (𝑡 (𝑥 ∖ {𝑡})) = (𝑧 (𝑥 ∖ {𝑧})))
76neeq1d 2853 . . . . 5 (𝑡 = 𝑧 → ((𝑡 (𝑥 ∖ {𝑡})) ≠ ∅ ↔ (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅))
87cbvralv 3171 . . . 4 (∀𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})) ≠ ∅ ↔ ∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅)
96ineq1d 3813 . . . . . . 7 (𝑡 = 𝑧 → ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦) = ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑦))
109eleq2d 2687 . . . . . 6 (𝑡 = 𝑧 → (𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦) ↔ 𝑣 ∈ ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑦)))
1110eubidv 2490 . . . . 5 (𝑡 = 𝑧 → (∃!𝑣 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑦)))
1211cbvralv 3171 . . . 4 (∀𝑡𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦) ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑦))
138, 12imbi12i 340 . . 3 ((∀𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})) ≠ ∅ → ∀𝑡𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦)) ↔ (∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ → ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑦)))
14 in12 3824 . . . . . . . . . 10 (𝑧 ∩ (𝑦 𝐴)) = (𝑦 ∩ (𝑧 𝐴))
15 incom 3805 . . . . . . . . . 10 (𝑦 ∩ (𝑧 𝐴)) = ((𝑧 𝐴) ∩ 𝑦)
1614, 15eqtri 2644 . . . . . . . . 9 (𝑧 ∩ (𝑦 𝐴)) = ((𝑧 𝐴) ∩ 𝑦)
17 kmlem9.1 . . . . . . . . . . 11 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
1817kmlem11 8982 . . . . . . . . . 10 (𝑧𝑥 → (𝑧 𝐴) = (𝑧 (𝑥 ∖ {𝑧})))
1918ineq1d 3813 . . . . . . . . 9 (𝑧𝑥 → ((𝑧 𝐴) ∩ 𝑦) = ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑦))
2016, 19syl5req 2669 . . . . . . . 8 (𝑧𝑥 → ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑦) = (𝑧 ∩ (𝑦 𝐴)))
2120eleq2d 2687 . . . . . . 7 (𝑧𝑥 → (𝑣 ∈ ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑦) ↔ 𝑣 ∈ (𝑧 ∩ (𝑦 𝐴))))
2221eubidv 2490 . . . . . 6 (𝑧𝑥 → (∃!𝑣 𝑣 ∈ ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 𝐴))))
23 ax-1 6 . . . . . 6 (∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 𝐴)) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 𝐴))))
2422, 23syl6bi 243 . . . . 5 (𝑧𝑥 → (∃!𝑣 𝑣 ∈ ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑦) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 𝐴)))))
2524ralimia 2950 . . . 4 (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑦) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 𝐴))))
2625imim2i 16 . . 3 ((∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ → ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑦)) → (∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ → ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 𝐴)))))
2713, 26sylbi 207 . 2 ((∀𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})) ≠ ∅ → ∀𝑡𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦)) → (∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ → ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 𝐴)))))
2817raleqi 3142 . . . 4 (∀𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑧 ∈ {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))} (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
29 df-ral 2917 . . . 4 (∀𝑧 ∈ {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))} (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑧(𝑧 ∈ {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
30 vex 3203 . . . . . . . . 9 𝑧 ∈ V
31 eqeq1 2626 . . . . . . . . . 10 (𝑢 = 𝑧 → (𝑢 = (𝑡 (𝑥 ∖ {𝑡})) ↔ 𝑧 = (𝑡 (𝑥 ∖ {𝑡}))))
3231rexbidv 3052 . . . . . . . . 9 (𝑢 = 𝑧 → (∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡})) ↔ ∃𝑡𝑥 𝑧 = (𝑡 (𝑥 ∖ {𝑡}))))
3330, 32elab 3350 . . . . . . . 8 (𝑧 ∈ {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))} ↔ ∃𝑡𝑥 𝑧 = (𝑡 (𝑥 ∖ {𝑡})))
3433imbi1i 339 . . . . . . 7 ((𝑧 ∈ {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ (∃𝑡𝑥 𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
35 r19.23v 3023 . . . . . . 7 (∀𝑡𝑥 (𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ (∃𝑡𝑥 𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
3634, 35bitr4i 267 . . . . . 6 ((𝑧 ∈ {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ ∀𝑡𝑥 (𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
3736albii 1747 . . . . 5 (∀𝑧(𝑧 ∈ {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ ∀𝑧𝑡𝑥 (𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
38 ralcom4 3224 . . . . 5 (∀𝑡𝑥𝑧(𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ ∀𝑧𝑡𝑥 (𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))))
39 vex 3203 . . . . . . . 8 𝑡 ∈ V
4039difexi 4809 . . . . . . 7 (𝑡 (𝑥 ∖ {𝑡})) ∈ V
41 neeq1 2856 . . . . . . . 8 (𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ ↔ (𝑡 (𝑥 ∖ {𝑡})) ≠ ∅))
42 ineq1 3807 . . . . . . . . . 10 (𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → (𝑧𝑦) = ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦))
4342eleq2d 2687 . . . . . . . . 9 (𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → (𝑣 ∈ (𝑧𝑦) ↔ 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦)))
4443eubidv 2490 . . . . . . . 8 (𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃!𝑣 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦)))
4541, 44imbi12d 334 . . . . . . 7 (𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → ((𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ((𝑡 (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦))))
4640, 45ceqsalv 3233 . . . . . 6 (∀𝑧(𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ ((𝑡 (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦)))
4746ralbii 2980 . . . . 5 (∀𝑡𝑥𝑧(𝑧 = (𝑡 (𝑥 ∖ {𝑡})) → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ ∀𝑡𝑥 ((𝑡 (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦)))
4837, 38, 473bitr2i 288 . . . 4 (∀𝑧(𝑧 ∈ {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))} → (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦))) ↔ ∀𝑡𝑥 ((𝑡 (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦)))
4928, 29, 483bitri 286 . . 3 (∀𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑡𝑥 ((𝑡 (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦)))
50 ralim 2948 . . 3 (∀𝑡𝑥 ((𝑡 (𝑥 ∖ {𝑡})) ≠ ∅ → ∃!𝑣 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦)) → (∀𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})) ≠ ∅ → ∀𝑡𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦)))
5149, 50sylbi 207 . 2 (∀𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) → (∀𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})) ≠ ∅ → ∀𝑡𝑥 ∃!𝑣 𝑣 ∈ ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑦)))
5227, 51syl11 33 1 (∀𝑧𝑥 (𝑧 (𝑥 ∖ {𝑧})) ≠ ∅ → (∀𝑧𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧𝑦)) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481   = wceq 1483  wcel 1990  ∃!weu 2470  {cab 2608  wne 2794  wral 2912  wrex 2913  cdif 3571  cin 3573  c0 3915  {csn 4177   cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-uni 4437  df-iun 4522
This theorem is referenced by:  kmlem13  8984
  Copyright terms: Public domain W3C validator