MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latcl2 Structured version   Visualization version   GIF version

Theorem latcl2 17048
Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
latcl2.b 𝐵 = (Base‘𝐾)
latcl2.j = (join‘𝐾)
latcl2.m = (meet‘𝐾)
latcl2.k (𝜑𝐾 ∈ Lat)
latcl2.x (𝜑𝑋𝐵)
latcl2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
latcl2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑋, 𝑌⟩ ∈ dom ))

Proof of Theorem latcl2
StepHypRef Expression
1 latcl2.x . . . 4 (𝜑𝑋𝐵)
2 latcl2.y . . . 4 (𝜑𝑌𝐵)
3 opelxpi 5148 . . . 4 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
41, 2, 3syl2anc 693 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
5 latcl2.k . . . . 5 (𝜑𝐾 ∈ Lat)
6 latcl2.b . . . . . 6 𝐵 = (Base‘𝐾)
7 latcl2.j . . . . . 6 = (join‘𝐾)
8 latcl2.m . . . . . 6 = (meet‘𝐾)
96, 7, 8islat 17047 . . . . 5 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
105, 9sylib 208 . . . 4 (𝜑 → (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))))
11 simprl 794 . . . 4 ((𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom = (𝐵 × 𝐵))) → dom = (𝐵 × 𝐵))
1210, 11syl 17 . . 3 (𝜑 → dom = (𝐵 × 𝐵))
134, 12eleqtrrd 2704 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
1410simprrd 797 . . 3 (𝜑 → dom = (𝐵 × 𝐵))
154, 14eleqtrrd 2704 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
1613, 15jca 554 1 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑋, 𝑌⟩ ∈ dom ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cop 4183   × cxp 5112  dom cdm 5114  cfv 5888  Basecbs 15857  Posetcpo 16940  joincjn 16944  meetcmee 16945  Latclat 17045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-dm 5124  df-iota 5851  df-fv 5896  df-lat 17046
This theorem is referenced by:  latlej1  17060  latlej2  17061  latjle12  17062  latmle1  17076  latmle2  17077  latlem12  17078
  Copyright terms: Public domain W3C validator