![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latref | Structured version Visualization version GIF version |
Description: A lattice ordering is reflexive. (ssid 3624 analog.) (Contributed by NM, 8-Oct-2011.) |
Ref | Expression |
---|---|
latref.b | ⊢ 𝐵 = (Base‘𝐾) |
latref.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
latref | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latpos 17050 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | 2, 3 | posref 16951 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
5 | 1, 4 | sylan 488 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 Basecbs 15857 lecple 15948 Posetcpo 16940 Latclat 17045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-dm 5124 df-iota 5851 df-fv 5896 df-preset 16928 df-poset 16946 df-lat 17046 |
This theorem is referenced by: latleeqj1 17063 latjidm 17074 latleeqm1 17079 latmidm 17086 olj01 34512 olm01 34523 cmtidN 34544 ps-1 34763 3at 34776 llnneat 34800 2atnelpln 34830 lplnneat 34831 lplnnelln 34832 3atnelvolN 34872 lvolneatN 34874 lvolnelln 34875 lvolnelpln 34876 4at 34899 lplncvrlvol 34902 lncmp 35069 lhpocnle 35302 ltrnel 35425 ltrncnvel 35428 ltrnmwOLD 35438 tendoidcl 36057 cdlemk39u 36256 dia1eldmN 36330 dia1N 36342 dihwN 36578 dihglblem5apreN 36580 dihmeetbclemN 36593 |
Copyright terms: Public domain | W3C validator |