MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latref Structured version   Visualization version   GIF version

Theorem latref 17053
Description: A lattice ordering is reflexive. (ssid 3624 analog.) (Contributed by NM, 8-Oct-2011.)
Hypotheses
Ref Expression
latref.b 𝐵 = (Base‘𝐾)
latref.l = (le‘𝐾)
Assertion
Ref Expression
latref ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)

Proof of Theorem latref
StepHypRef Expression
1 latpos 17050 . 2 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
2 latref.b . . 3 𝐵 = (Base‘𝐾)
3 latref.l . . 3 = (le‘𝐾)
42, 3posref 16951 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
51, 4sylan 488 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  Basecbs 15857  lecple 15948  Posetcpo 16940  Latclat 17045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-dm 5124  df-iota 5851  df-fv 5896  df-preset 16928  df-poset 16946  df-lat 17046
This theorem is referenced by:  latleeqj1  17063  latjidm  17074  latleeqm1  17079  latmidm  17086  olj01  34512  olm01  34523  cmtidN  34544  ps-1  34763  3at  34776  llnneat  34800  2atnelpln  34830  lplnneat  34831  lplnnelln  34832  3atnelvolN  34872  lvolneatN  34874  lvolnelln  34875  lvolnelpln  34876  4at  34899  lplncvrlvol  34902  lncmp  35069  lhpocnle  35302  ltrnel  35425  ltrncnvel  35428  ltrnmwOLD  35438  tendoidcl  36057  cdlemk39u  36256  dia1eldmN  36330  dia1N  36342  dihwN  36578  dihglblem5apreN  36580  dihmeetbclemN  36593
  Copyright terms: Public domain W3C validator